

Economic Computation and Economic Cybernetics Studies and Research, Issue 4/2016, Vol. 50

__

25

64B3AC - SYMMETRIC CRYPTO-SYSTEM FOR BUSINESS USING

THE ASCII ALPHABET AND ALGORITHM CODES CALLED IN

CASCADE

 Abstract. The paper introduces a cryptographic technique useful to

encipher the content of secret business reports and a corresponding prototype

called 64B3AC (SYmmetric Crypto-System for Business using the ASCII Alphabet

and Algorithm Codes Called in Cascade), developed and tested under a data

oriented environment. References to a special interactive tutorial presenting the

logic and functionality of this technique are also included. Historical elements

starting from initial ideas, challenges and applications up to potential

improvements of the current version were considered too. In order to offer an

honest image concerning the performance of this technique the paper includes the

results of two hundred successful tests focused on processing speed, input and

output as occupied space and number of total files generated or used along the

encryption or decryption processes (one hundred for each way). Another goal of

the paper was to underline the possibilities of the symmetric encryption with many

advantages when combined to other techniques.

Keywords: symmetric cryptography, multiple / cascade encryption,

development environment, a posteriori correction, increased randomness.

JEL Classification: D82, D83, L86

1. Introduction

Nowadays when the approach of security issues is made in terms of

standards and proven models, the effort to come with something new and better is

considerably harder and must consider the hardware development, the multitude of

cryptanalytic techniques and types of attacks but still a compromise between

strength and complexity on one side and resource consumption on the other.

Researcher Daniel HOMOCIANU, PhD

E-mail: daniel.homocianu@feaa.uaic.ro

Professor Dinu AIRINEI, PhD

E-mail: adinu@uaic.ro

“Alexandru Ioan Cuza” University (UAIC)

Faculty of Economics and Business Administration (FEAA)

mailto:daniel.homocianu@feaa.uaic.ro
mailto:adinu@uaic.ro

Daniel Homocianu, Dinu Airinei

26

The technique we have developed contains a combination of many well-

known operations on strings and can be extended to a larger number of basic

algorithms (ALGs) easy to adapt for an on-line solution.

The original motivation was to solve in a simple, original and functional

way the problem of encrypting passwords to store in a table of a relational data

base. That moment we have thought to do the basic operations on DETs (DEcimal

digiTs) and ASCs (ASCII characters) and not in binary, considering that

cryptography for card readers and ATMs was not our goal. Although we came to

the point of operating with vectors/arrays of strings in long processing sessions

including hibernation states of the operating system (OS) in some preliminary

tests, we did a lot of optimizations in order to reduce the processing time for

reasonable limits of input parameters as seen in those two hundreds tests (tables 1,

2 and 3). The cryptographic prototype we have obtained (Fig.3) is currently more

suitable for protecting large blocks of text than passwords before storage and can

also serve as a benchmark tool for one core of a central processing unit running a

Windows type OS for personal computers.

The highlights of the paper are: the algorithms including ASCII

compressions and expansions, ballast insertions, transpositions and statistical

corrections applied in cascade and currently coded as digits (one digit for each

algorithm) in a random symmetric key; a generator of a priori keys and premises of

pure randomization support in algorithms; a posteriori keys made of encrypted

markers for substitutions also serving as strength levels; useful results for deriving

estimation functions; further considerations regarding the use of NVidia’s

Computer Unified Device Architecture (CUDA) or cloud resources.

2. Short history of 64B3AC

The first version of this crypto-system was intended to protect the content

of the values for the password field in a table of a database about quizzes and their

authors (Fig.1) that have full rights granted with password-based access.

An example of Visual Basic (VB) 6.0 source code fragments behind the 1st

version of the crypto-system based on three ALGs initially used to cipher (C

ALGs) and decrypt (D ALGs) the values of a password field is presented below:

64B3AC

27

...

 Begin VB.TextBox

txtNumCiphPASS

 DataField = “Pass”

 DataSource = “Aut” ‘Authors

 ...

 End

 Begin VB.TextBox txtBallastKEY

 DataField = “Name”

 DataSource = “Aut”

 ...

 End

 Begin VB.Data Aut

 Caption = “Authors”

 Connect = “Access”

 DatabaseName =

“D:\QDB\quizzes.mdb”

 ...

 ReadOnly = 0 ‘False

 RecordsetType = 1 ‘Dynaset

 RecordSource = “Aut”

 ...

 End

...

Private Sub

cmdButtonBrowseAut_Click(Index As

Integer)

 Dim DeCiphPASS as String

 With Aut.Recordset

 Select Case Index

 Case 0

 If Not (.Bof) Then

 .MoveFirst

 End If

 Case 1

 If Not (.Bof) Then

 .MovePrevious

 If .BOF Then

 .MoveFirst

 End If

 End If

 ...

 End Select

 End With

 ...

 If Not (Aut.RecordSet.EOF) And Not

(Aut.RecordSet.BOF) Then

 DeCiphPASS =

D1(D2(D3(formCreateAut.txtNumCiphPA

SS), formCreateAut.txtBallastKEY))

 End If

End Sub

Figure 1. Examples / explanations for 1st version of VB ALGs to decrypt (D)

Source: sites.google.com/site/supp4for64b3ac/downloads/fig1.tiff

That time the symmetric final key (FK) was set in an incipient inadequate

way by the code’s programmer as a predetermined set of consecutive / in cascade

references to the corresponding encryption ALGs following a simple principle: the

output of the previous ALG (call) is input for the next one. For instance, C3 (C2

https://sites.google.com/site/supp4for64b3ac/downloads/fig1.tiff?attredirects=0&d=1

Daniel Homocianu, Dinu Airinei

28

(C1 (input))) means “123” as a symmetric FK used both for encryption (as it is)

and decryption (in reverse order: 321 - see Fig.1).

In order to get to what we consider to be the 2nd version we have defined

six atomic ALGs: the old C3/D3 (Fig.1) was split into four pieces (C1-4/D1-4 - the

code sequence before Fig.2), the old C2/D2 became C5/D5 and the old C1/D1 was

renamed to C6/D6.

An example of VB6.0 source code sequence behind the 2nd version of the

crypto-system based on six ALGs mainly used for encrypting text blocks and

implementing the cascade principle by using a symmetric FK (just 1-6 digits) is:
Public Function C(IS As String, BK As

String, FK As String)

‘IS -> Intermediary String

‘BK -> Ballast Key / Padding Text

‘FK -> Final Key giving the cascade itself

Dim STBE As String

‘STBE -> StringToBeExec

Dim i As Long

STBE=IS

For i=1 To Len(FK)

 Select Case Mid(FK,i,1)

 Case 1

 STBE=C1(STBE)

 Case 2

 STBE=C2(STBE)

 Case 3

 STBE=C3(STBE)

Case 4

 STBE=C4(STBE)

 Case 5

 STBE=C5(STBE, BK)

 Case 6

 STBE=C6(STBE)

 Case Else

 MsgBox “FK Probl.:1-6 required”,

vbCritical + vbOkOnly

 STBE=””

 i=Len(FK)+1 ‘Get out of the For loop

 End Select

Next i

C=STBE

End Function

Figure 2. The interface of the 3rd version of the crypto-system – example of

step-by step encryption using the cut & paste option (the bottom side button)

Source: sites.google.com/site/supp4for64b3ac/downloads/fig2.tiff

Next (3rd version) we have developed a specialized interface able to

automatically translate (fig.2) a succession of manual calls (ten DETs for ten

ALGs) into a symmetric FK (DETs). Thus the need for four more transpositions

https://sites.google.com/site/supp4for64b3ac/downloads/fig2.tiff

64B3AC

29

essentially based on reversing extremes of substrings of prime numbers length (5,

7, 11, etc.). This version brought most of the same snags: still limited output

alphabet (DETs and commas) because of the only one way substitution defined

that time - ASCII Expansion (AEXP) transforming ASCII strings to DECIMAL

codes plus commas and positional codes (fig.1) as in the 2nd version; lack of a

generator of FKs; no APOKs (A Posteriori/Feed-Back Keys) and consequently a

rapidly growing Intermediate Text Block (ITB) as input/output of encryption

ALGs running in cascade and a large final encrypted block (Cipher Text - CT); up

to 200 DETs FK as maximum number of cascade levels in order to avoid putting

the OS in hibernate states and complete the tests.

We consider that the 4th version (Airinei and Homocianu, 2009) was

finalized when the prototype was extended offering support for two-way

substitutions: both AEXPs and ASCII Compressions (ACOMPs). AEXPs do the

same as in the past. ACOMPs do vice versa skipping mostly commas in order to

enlarge the output’s alphabet and reduce the occupied space. That time we have

got encryption errors caused by some untreated ASCII codes in ACOMP

generating exceptions - Fig.6.

In its 5th version, the prototype was upgraded to a set of ALGs supporting

both a pseudo-random APRK (A Priori Key) generator, and a first generation of

APOKs resulting from a single round of statistical corrections just after the final

step of the cascade encryption corresponding to the FK’s final digit, just before

encrypting it by using the Main / Master Key (MK - Fig.7).

The current version (6th) adds a second system of APOKs generators

based on a multi-step simple statistical correction, upgraded ASCII substitution

ALGs that support a perfectly random APRK generator and, of course, the

64B3AC acronym. This 6th version of the prototype was tested with cascades up

to 1000 (1K) levels. The primary validation of the keys and CT was designed to be

done based on their dimension in bytes currently computed together with the

number of seconds of processing before finishing the encryption. We intend to add

at least simple checks of the digits obtained after converting ASCs of keys and CT

to DETs (reduce KB of data to a number) if not hash functions derived from

compression ALGs (Alshaikhli and Al Ahmad, 2015). By simply combining

permutations on substrings of a prime number length (no APOKs), ballast

insertions, AEXPs & ACOMPs as substitutions and corrective ALGs (non-random

APOKs) all coded as 0 to 9, we have created the support for a perfectly random

APRKs generator used before launching the encryption: FK - to store the cascade

of ALGs, MK - to encode the content of files storing APOKs, Neighbor Repetitive

Char Correction String Key (NRCCSK) - to do intermediate statistical corrections,

Ballast / Padding String / Key (BSK) for random ballast.

The common part of these versions mentioned above is the cascade

technique easy to be understood by simply referring to the Triple DES (Stamp,

2006) as evolution from the criticized DES that had limitations imposed by NSA.

Daniel Homocianu, Dinu Airinei

30

The One-Time Pad inspired us to improve the crypto-system by enabling it

to ensure the uniqueness of the CT at different runtime moments even for the same

input parameters by simply reconsidering just the ALG that generates random

chars for corrections and ballast insertions.

3. Some advantages of the development environment

The speed and easiness of programming by using Beginners All-Purpose

Symbolic Instruction Code (B.A.S.I.C.) and later Q-Basic, Visual Basic (VB) as

part of the Microsoft Visual Studio, Visual Basic for Applications (VBA) and so

one is something undeniable since the age of Z80 CPUs (Mann, 1983).

Figure 3. 64B3AC’s interface (Excel form: cells, rules, buttons and macros)

Sources: sites.google.com/site/supp4for64B3AC/downloads/64B3AC-interactive-

supp-tutorial.pdf and sites.google.com/site/supp4for64b3ac/downloads/fig3.tiff

Our first reasons were related to speed of development and continuity of a

work began under VB6.0. But VBA with Microsoft Office Excel (fig.3) was our

choice for many other motivations:

- High code compatibility between VBA in different versions of Microsoft

Excel (Office 2007, 2010 or 2013) and VB6.0 or .NET;

- Notable speed differences (up to 1:2) when testing this crypto-system on a

AMD’s x64 based architecture by using Office on 32 and on 64 bits;

https://sites.google.com/site/supp4for64b3ac/downloads/64b3ac-interactive-supp-tutorial.pdf
https://sites.google.com/site/supp4for64b3ac/downloads/64b3ac-interactive-supp-tutorial.pdf
https://sites.google.com/site/supp4for64b3ac/downloads/fig3.tiff?attredirects=0&d=1

64B3AC

31

- Ease of generating and managing the encipher/decipher parameters and those

hundreds random atomic digits as source values for APRKs, APOKs, blocks for

ballast insertion and corrections by using cells; the values from those cells are

objects of concatenations, exception treatments (validations, formatting rules, IF

tests) or dynamic position based searches able to quickly identify custom separated

blocks and easily generate derivate cells - e.g. MID(String, SEARCH (subString1,

separator1), SEARCH (subString2, separator2));

- Ease of using intuitive cells instead of variables in order to manage the

progress of overall processing, the execution time and the output’s measurement;

- Ease of automatic recalculation (update) of cells containing randomization

functions for each modification of any other cell compared to the complexity of

doing that directly from code;

- Additional visual feed-back when debugging a VBA script by using the

extended desktop which allows us to continue to see the interface of the

application and the exact state of the values in cells, having a considerable impact

on decrease of the development effort;

- Theoretical zero exposure of the VBA ALGs configured to work when

clicking on the buttons of the custom form (fig.3) defined in Excel if the host sheet

is password protected and all possible exceptions are captured. Anyway, the

64B3AC’s strength identifies with the power of the system of keys and not with

the secrecy of the ALGs. Moreover, for certain exceptions, we can trigger some

confusion making ALGs able to proportionally load the CPU at decryption and

lead to untraceable nonsenses as apparently meaningful content. Hence the need to

measure the output (Fig.5) and the time needed to encrypt and most importantly

decrypt with certain parameters and even derive some corresponding estimation

functions.

4. Assumptions and additional arguments

Let us assume that, starting from an intercepted cipher text, a common

transistor based processor (operations in binary) doing brute force decryption tests

(no cryptanalysis) would be able to detect an untreated error/exception or a

meaningless result (dead-ends) corresponding to a wrong combination of those at

least 10^100 theoretical possibilities in ~ 1/10000 seconds, where 100 is the

minimum tested length of 64B3AC’s FK. Even so, to test all the combinations of

the FK we would need 10^100 / (10000*3600*24*365) ~ 3.17*10^88 years (one

year usually equals 365*24*3600 seconds).

The blind and time consuming brute force attack scenario above being

obviously far from enough on can think of some optimizations. If we imagine the

64B3AC crypto-system simply as a tree with ten branches per level and at least

100 levels (FK’s minimum length), the intercepted cipher text acts as a leaf from

all those minimum 10^100 possible ones for the same plaintext. Thus an efficient

tree search based attack (Giribet, 2007) will most probably try to find out the

plaintext (root) by both trying to estimate the number of levels and generating the

Daniel Homocianu, Dinu Airinei

32

reverse route of “sap” thru ramifications from the leaf back to the root by isolating

the dead-ends – back-tracking (Stamp and Low 2007).

In order to strengthen the 64B3AC against modern cryptanalytic attacks (Swenson,

2008) we have considered several methods:

(A) At the end of executing the ACOMP ALG (coded as 0 in FK) we have used

a very simple statistical correction of the ITB. This correction was meant to

replace the first character in each sequence of two neighbors with the same value

by another character from another block randomly generated (once at initialization

- currently for APRKs or many times). And there are chances for the random block

to absolutely arbitrary provide at a certain point the same character as the one

meant to be replaced. The sequence generating this random block can be used any

time we want with minimum costs in terms of processing time and not just once,

as we did in order to reduce the waiting time and with the compromise of having

identical results on different moments for the same input parameters. Thus the

neighbor correction becomes a great source of entropy. In addition, it creates an

additional level of safety by generating APOKs. Each of these keys indicates a set

of characters in ITB that were replaced at a certain point, their positions and has

the content encrypted by using the MK. The entire set is generated (after

encryption) and must be copied (before decryption) at “D:/_apost_keys_n” (APOK

for neighbor correction).

(B) We have also reviewed the first part of the ACOMP ALG and now it

operates on any kind of ASCII text and not just on DETs as in previous versions.

This creates the perfect support for generating pure random final APRKs including

the FK which indicates the sequencing of 0-9 ALGs on each execution level (call)

of those up to 1000 tested. In other words, in previous versions we could not have

a sequence as 2579430560 because the AEXP ALG (coded as 9 in the FK) tried to

transform characters into numerical codes between 0 and 255 (DETs) and later the

ALG coded as 0 tried to make ASCII characters from 2/3 digit codes (DETs)

reporting failures when encounters an ASCs. And that happened because of those

two consecutive occurrences of 0 with no 9 between them. Therefore, in order to

avoid impossibilities of transformation and corresponding fatal errors, the first

version of ALGs for generating keys were designed consequently with no full

random support and unfortunately able to cause sets of weak keys, vulnerabilities

and lower entropy. Now things are not the same because the ALG coded as 0 also

generates a set of feed-back keys / APOKs before making the statistical correction.

These keys (“D:/_apost_keys_0”) have a content encrypted with the MK and store

positions (support for decryption) of those non-DETs chars found when trying to

compress (ACOMP) and remaining as such.

(C) The AEXP ALG behaves similarly in terms of feed-back. But in the

previous versions, the subsequence of positions created by this one was glued to

the ITB (Fig.1 - D1), making it harder and harder to further cascade and finally

generating a huge ciphertext.txt (tens to hundreds of MB). Now this procedure was

64B3AC

33

dropped and we have decided to do the separate storage of the substring of

positions as another set of generated APOKs (_apost_keys_9).

(D) The ALG coded as 5 inserts ballast depending on the BSK. But that can be

easily modified the way that for each request for ballast, the ballast will be

different. This is also a good source of entropy and ensures that with the same

input parameters we will get to different CTs at different moments.

In this 6th version of the 64B3AC crypto-system the ALGs coded as 1, 2, 3, 4, 6, 7

& 8 make transpositions on the ITB. The entire set of ALGs (0-9) is put to work in

a symmetrical cascade offering support for perfectly random generators of APRK

FK (the cascade itself) and creates several files (APOKs) in addition to the CT.

Figure 4. No. of files (output) vs. No. of encryption levels (FK) of 64B3AC

Sources: sites.google.com/site/supp4for64b3ac/downloads/fig4.tiff and the .zip

archives (folders, source code, data samples and encryption and decryption results)

available at: sites.google.com/site/supp4for64B3AC/downloads

Because the random input blocks (APRKs) for both ballast insertions

(ALG code 5) and statistical corrections (end of ALGs code 0 & 9) are easy to

refresh/regenerate, they can easily induce a lot of entropy both in CT and APOKs.

In addition the last ones can be sent on many channels decreasing the risk of

interception. Thus the need to develop and use a protocol able to automatically

handle the parallel transmission of CT and APOKs (many files - Fig.4) on

different channels might lead to a consistent improvement.

5. Experimental results

In addition to references to code sequences (Barnes, 2010) and screen

captures of applications, the 64B3AC crypto-system comes together with an

interactive tutorial (Homocianu, 2016) containing both a limited emulation of the

functional application and a text-based ad-hoc documentation integrated in an

all-in-one portable document format (.pdf) file explaining its entire functionality.

The final tests were made using VBA on Office 2013 64bits and Windows

7 Ultimate 64 bits running on a machine made around the 3rd generation Core i5

3470 CPU (3.2 GHz, x64) and a DDR3 memory module (1.6 GHz, 4096MB).

https://sites.google.com/site/supp4for64b3ac/downloads/fig4.tiff?attredirects=0&d=1
https://sites.google.com/site/supp4for64b3ac/downloads

Daniel Homocianu, Dinu Airinei

34

When running final tests we had no Internet connection, no graphic drivers & no

antivirus software installed and no additional processes running.

The preliminary tests were made using various CPUs: AMD Athlon XP

3200+ 2.2GHz single core-1 thread, AMD Athlon 64 X2 4200+ 2.2GHz dual core-

2 threads, Intel Pentium E2140 1.6GHz dual core-2 threads, Intel Core2 Duo

P8600 2.4 GHz dual core-2 threads, Intel Atom N550 1.5 GHz dual core-4 threads,

and the Core i5 quad core-4 threads mentioned above. These tests clearly show

that a single core of CPU/single thread was actually used for encryption and

decryption using the cascade-based technique chosen for 64B3AC. That

conclusion was clear after analyzing the CPU Usage and CPU Usage History

values and graphs on the Performance tab in Windows Task Manger: ~100% load

for single core and one thread CPU, ~50% load for dual core and two threads

CPUs, ~ 25% load for dual/quad core and four threads ones.

As a benchmark tool, 64B3AC shows expected differences between

different architectures/generations of CPU units (e.g. Athlon 64 X2-2005 vs. Core

i5: 1X-2012 means in terms of speed 1 vs. 2-8X from the simplest to the most

complex tests of those 200 made with Core i5).

As a result of the final tests, we have generated three matrices after those

200 tests we have made on the current version of the prototype (100 for

encryption, 100 for decryption with the same parameters). The intersection of the

axes is meant to represent either the result as processing time (tables 1 and 2) or

the Kilobytes (KB - table 3) of output (CT + APRKs + APOKs). On the axes we

indicate 10 samples of plaintext with different length of chars (k meaning KB) and

other 10 samples (100 -1000 DETs or levels) depending on the length of final semi

random FK APRK which describe the order in which the ALGs are processed.

Table 1. Encryption time (sec.) depending on input plaintext (KB) and FK’s

length

INPUT (KB)

 Encryption time:

LEVELS

(DETs in FK)

2 4 6 8 10 12 14 16 18 20

 100 2 3 3 4 6 7 11 14 16 21

 200 4 7 18 27 43 59 84 136 124 168

 300 5 7 9 14 19 30 46 66 63 88

 400 5 8 11 18 26 38 50 71 86 125

 500 8 18 35 63 111 151 278 261 341 452

 600 11 28 61 112 208 293 400 493 601 886

 700 13 32 70 122 205 313 460 546 755 1086

 800 10 15 85 41 61 95 127 163 268 262

 900 18 48 100 182 310 438 817 837 1218 1783

1000 19 48 104 197 308 482 604 805 1131 1638

Source: The .zip archives: sites.google.com/site/supp4for64B3AC/downloads

https://sites.google.com/site/supp4for64b3ac/downloads

64B3AC

35

Table 2. Decryption time (sec.) depending on input plaintext and FK’s length

INPUT (KB)

 Decryption time:

LEVELS

(DETs in FK)

2 4 6 8 10 12 14 16 18 20

 100 2 2 2 3 4 5 7 8 12 14

 200 2 6 12 18 28 45 63 97 101 135

 300 3 4 7 11 15 22 30 99 49 63

 400 3 6 9 14 22 30 40 56 67 83

 500 6 15 30 50 87 126 206 217 283 372

 600 8 23 48 87 143 225 315 446 489 679

 700 10 26 56 101 161 241 365 442 577 892

 800 6 11 20 94 49 70 94 127 162 190

 900 14 42 85 148 239 359 636 700 959 1434

1000 15 41 84 168 285 361 623 654 916 1372

Source: The .zip archives: sites.google.com/site/supp4for64B3AC/downloads

The data in first two tables (1 and 2) suggests most probably an

exponential growth of the time we need in order to encrypt/decrypt depending on

both the plaintext’s size (KB) and FK’s length. The data in table 3 indicates a

linear relation between the size of input and output and most probably an

exponential one between FK’s length and the size of output.

Table 3. Size of output (KB) depending on input plaintext and FK’s length

INPUT (KB)

Size of output:

LEVELS

(DETs in FK)

2 4 6 8 10 12 14 16 18 20

 100 12 23 35 46 58 71 84 96 108 121

 200 34 68 103 139 176 216 256 295 336 377

 300 30 63 96 128 163 199 236 273 308 346

 400 41 85 129 173 220 271 319 368 419 469

 500 64 130 200 269 345 422 499 578 656 736

 600 105 219 337 456 589 714 845 979 1106 1260

 700 142 290 453 609 782 948 1126 1301 1485 1669

 800 85 176 268 359 460 565 668 769 872 982

 900 189 388 603 816 1045 1270 1505 1741 1987 2232

1000 175 357 546 743 948 1147 1362 1577 1792 2007

Source: The .zip archives: sites.google.com/site/supp4for64B3AC/downloads

https://sites.google.com/site/supp4for64b3ac/downloads
https://sites.google.com/site/supp4for64b3ac/downloads

Daniel Homocianu, Dinu Airinei

36

Figure 5. The output’s size and structure after running a 64B3AC encryption

Source: sites.google.com/site/supp4for64b3ac/downloads/fig5.tiff

The fluctuations noticeable in all the tables above (200L-peak, 800L

and1000L-gaps) and happening for all 10 samples of input text (plaintext) are due

to some differences concerning the distribution of 9 (cyph_time[..].txt filename -

Fig.5) and 0 values (associated to the most time consuming ALGs: AEXP and

ACOMP substitutions) in FK.

Figure 6. ASCII codes of characters to avoid in 64B3AC’s substitutions (VBA

exceptions / errors)

Source: sites.google.com/site/supp4for64b3ac/downloads/fig6.tiff

https://sites.google.com/site/supp4for64b3ac/downloads/fig5.tiff?attredirects=0&d=1
https://sites.google.com/site/supp4for64b3ac/downloads/fig6.tiff?attredirects=0&d=1

64B3AC

37

Figure 7. Spreadsheet functions returning random digits used by

the 64B3AC’s MK (left) and FK (right)

Source: sites.google.com/site/supp4for64b3ac/downloads/fig7.tiff

The initial exceptions (16 - Fig.6) making us to reduce the actual output

alphabet from 256 to 240 characters in the 6th (current) version of the

crypto-system are caused by the character with code 0 (NULL), by some other 14

characters acting as NULL in VBA (right of Fig.6) and also by the character with

code 44 (comma - still reserved for AEXPs).

6. Further approaches

In order to improve the current solution, first of all we intend to define and

implement a perfectly random key generator exploiting the already existent

support for it in the architecture of all ALGs.

Next we have plans to offer support for a runtime dynamic definition of a

greater number of faster ALGs and corresponding parameters randomly associated

to characters of a larger alphabet (e.g. ASCII instead of DETs). Thus we will deal

with native ASCII FKs and not DECIMAL compressed to ASCII ones. This

support can be ensured by using various substitution matrices, corresponding

checksums also serving as positional markers for random ballast insertions, and

the infinite collection of prime numbers useful for indicating the length of

substrings as objects of permutations. We also intend to define an extended

domain for the CTs (UNICODE - fig.8).

In addition to those above we will use two main approaches of exploiting

the physical processing resources.

https://sites.google.com/site/supp4for64b3ac/downloads/fig7.tiff?attredirects=0&d=1

Daniel Homocianu, Dinu Airinei

38

Figure 8. Example of using Google Script - Code.gs, Google Forms - 64B3AC

& Google Sheets - 64B3AC (Responses) to automatically send UNICODE

encryption parameters via e-mail

Source: sites.google.com/site/supp4for64b3ac/downloads/fig8.tiff

The first one is based on working with a cloud scripting language (e.g.

Google Apps Script / Google Script derived from Java Script) able to shorten the

development (on-line prototype). Such a prototype should be able to automatically

send both an e-mail message (1st channel - fig.8) to the receiver having the Time

Id as subject and the CT (content or link to it) and short messages (SMSs) to the

receiver’s phones / devices (another channels) having the same Time Id and parts

of the set of decryption keys (content or link).

The second approach will benefit from working with a large number of

substitution matrices simultaneously defined at runtime by using parallel algorithm

specifications (Hummel, 1994) and parallel computing platforms - e.g. Nvidia

CUDA C/C++.

https://sites.google.com/site/supp4for64b3ac/downloads/fig8.tiff?attredirects=0&d=1

64B3AC

39

7. Conclusions

The general conclusion of the paper underlines the importance of the

security supported by methods, techniques and tools able to provide an increased

level of complexity and accompanied by instruments able to explain the

application’s logic together with the corresponding requirements.

The chosen acronym is able to synthesize the logic of the whole approach

and also refers to a hexadecimal text (Color-Hex, 2016) which encodes (in many

color spaces) a certain color related to that present in the symbols of the chosen

development environments.

The examples describe the components of a functional model primarily

based on substitutions, permutations, ballast insertions and statistical corrections.

These are used one after another in an arbitrary cascade type order on ASCII

strings. Their implementation involves a user friendly interface and a productivity

oriented software development application.

The tables with test data made on the final version serve as a preliminary

support for processing time and output size estimations very useful when

developing further improvements of the crypto-system.

The paper does not claim completeness although the approaches were

defined after many increments on the initial ideas starting from storage needs up to

message sending requirements and promises a lot in terms of speed of processing

although the cascade itself (Lin at al., 2010) usually won’t benefit from the

advantages of parallel computation.

ACKNOWLEDGMENT:

The paper was funded by the Department of Research, Faculty of Economics

and Business Administration, “Alexandru Ioan Cuza” University of Iasi.

REFERENCES

 [1] Airinei, D., Homocianu, D. (2009), An Optimized Cryptographic Way to

Secure DSS Spreadsheet Reports. Proceedings of the Ninth International

Conference on Informatics in Economy - Education, Research & Business

Technologies, 903-908, ASE Publishing House, Bucharest;

 [2] Alshaikhli, I. F., AlAhmad, M. A. (2015), Cryptographic Hash Function:

A High Level View. In: Al-Hamami, A. H., Al-Saadoon, G. M. W. (eds.):

Handbook of Research on Threat Detection and Countermeasures in Network

Security, 80-94, IGI Global, Hershey;

Daniel Homocianu, Dinu Airinei

40

 [3] Barnes, N. (2010), Publish your Computer Code: It Is Good Enough.

Nature, 467, 753-757;

 [4] Color-Hex (2016). #64b3ac Color Hex. [Online]. Available at: <color-

hex.com/color/64b3ac>;

 [5] Giribet, G. (2007), Efficient Tree Searches with Available Algorithms.

Evolutionary Bioinformatics, 3, 341-356;

 [6] Homocianu, D. (2016), Interactive Support Tutorial for the 64B3AC

Crypto-system. [Online]. Available at:

<sites.google.com/site/supp4for64B3AC

/downloads/64B3AC-interactive-supp-tutorial.pdf>;

 [7] Hummel, S. F. (1994), On the Implementation of Set-based Parallel

Algorithms. In: Blelloch, G. E., Chandy, K. M., Jagannathan, S. (eds.):

DIMACS series in discrete mathematics and theoretical computer science,

Vol. 8., 101-114, The American Mathematical Society, New Jersey;

 [8] Lin, M., Cheng, S., Wawrzynek, J. (2010), Cascading Deep Pipelines to

Achieve High Throughput in Numerical Reduction Operations. Proceedings

of the International Conference on Reconfigurable Computing, IEEE

Publishing, Cancun;

 [9] Mann, S. (1983), Review: Kaypro 10. InfoWorld, 44, 109-110;

[10] Stamp, M. (2006), Information Security. Principles and Practice, Wiley,

New Jersey;

[11] Stamp, M., Low, R. M. (2007), Applied Cryptanalysis: Breaking Ciphers in

the Real World, 152-158, John Wiley & Sons, New Jersey;

[12] Swenson, C. (2008), Modern Cryptanalysis: Techniques for Advanced Code

Breaking, Wiley, Indianapolis.

http://www.color-hex.com/color/64b3ac
http://www.color-hex.com/color/64b3ac
https://sites.google.com/site/supp4for64b3ac/downloads/64b3ac-interactive-supp-tutorial.pdf
https://sites.google.com/site/supp4for64b3ac/downloads/64b3ac-interactive-supp-tutorial.pdf

