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Abstract. This paper presents a novel game theory approach for 

representing the Stackelberg dynamic duopoly models. The problem is fitted into a 

class of ergodic controllable finite Markov chains game. It is consider the case 

where a strong Stackelberg equilibrium point is convenient for both firms. We first 

analyze the best-reply dynamics of the Stackelberg duopoly model such that each 

firm’s best-reply strategies set agree with the set of maximizers of the opponents’ 

strategies. Then, the classical Stackelberg duopoly game is transformed into a 

potential game in terms of the Lyapunov theory. As a result, a duopoly model has 

the benefit that the best-reply dynamics results in a natural implementation of the 

behavior of a Lyapunov-like function. In addition, the strong equilibrium point 

properties of Stackelberg and Lyapunov meet in potential games. We validate the 

proposed method theoretically by computing the complexity and by a numerical 

experiment related to the duopoly model. 

Keywords: Dynamic duopoly model, complexity, strong Stackelberg 

equilibrium, Lyapunov equilibrium, Stackelberg games, Lyapunov games, Markov 
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1. Introduction 

 

1.1 Brief review 

Game theory is an increasingly important paradigm for reasoning about 

complex duopoly/oligopolies problems. For pioneering and innovative works on 

duopoly/oligopolies, see (Bös, 1991; Harris and Wiens, 1980; Ghadimi et al., 

2013) and surveys can be found in (Breitmoser, 2012; De Fraja and Delbono, 

1990). Cournot’s duopoly model (Cournot, 1938) of quantity competition was 
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modified by von Stackelberg (von Stackelberg, 1934), who represented the 

commitment that the leaders firm make to a leader policy, and the capability of the 

followers firms to learn about the policy during the planning phase of the game. 

This is, for example, the case of a mixed oligopoly market (Kalashnikova et al., 

2010) there is at least one private and one public firm. In this context, private firms 

are assumed to be profit maximizers and in some cases they have perfect 

knowledge and an optimal follower behavior. While the most prominent 

assumption is that a public firm maximizes social welfare (consumer plus producer 

surplus). In the paper by Matsumura (Matsumura, 2003), the author assumes a 

mixed duopoly and analyses a desirable role of leader or follower for a public firm. 

Matsumura found that the role of the public firm should be that of the leader.  

A standard way to interpret Stackelberg equilibrium is to see it as a 

Subgame Perfect Equilibrium (SPE) (Selten, 1965).  The concept of Stackelberg 

strategy can be extended to allow for a non-unique “rational” response of the 

follower. Then, the choice of the best-reply strategy from the leader’s point of view 

can have two different approaches: to assume a weak Stackelberg equilibrium 

which leads to a pessimistic attitude for the leader) or, the strong Stackelberg 

equilibrium (SSE) which leads to an optimistic approach (Morgan and Patrone, 

2006). We are considering the case where the SPE is a SSE. Many works analyzed 

Stackelberg models focusing primarily on computing Strong Stackelberg 

Equilibrium, which forces the follower to break ties optimally for the leader 

selecting from its best-reply strategy set the option that maximizes the utility of the 

leader.  

The notion of potential games were introduced by Monderer and Shapley 

(Monderer and Shapley, 1996)  whereby the information about Nash equilibria is 

nested into a single real-valued function (the potential function) over the strategy 

space. Several definitions of potential games have been presented in the literature. 

For instance, Voorneveld (Voorneveld, 2000) introduced the best-reply potential 

games having the distinctive feature that it allows infinite improvement paths, by 

imposing restrictions only on paths in which players that can improve actually 

deviate to a best-reply. Clempner and Poznyak (Clempner and Poznyak, 2011) 

proved that the Lyapunov equilibrium point coincides with the Nash equilibrium 

point under certain conditions. Clempner and Poznyak (Clempner and Poznyak, 

2013) showed that in the ergodic class of finite controllable Markov chains 

dynamic games the best reply actions lead obligatory to one of Nash equilibrium 

points. This conclusion is done by the Lyapunov Games concept which is based on 

the designing of an individual Lyapunov function (related with an individual cost 

function) which monotonically decreases (non-increases) during the game.  

A result related to Cournot and potential games was presented by 

Clempner (Clempner, 2015) proving that the stability conditions and the 

equilibrium point properties of Cournot and Lyapunov meet in potential games. 

Dragone et al. (Dragone et al., 2012) proved that the Cournot oligopoly game with 
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non-linear market demand can be reformulated as a best-reply potential game 

where the best-reply potential function is linear-quadratic in the special case where 

marginal cost is normalized to zero. Also, Dragone et al. (Dragone et al., 2008) 

identified the conditions for the existence of a best-response potential function and 

characterize its construction, describing then the key properties of the equilibrium 

presenting applications to oligopoly. Amir and Grilo (Amir and Grilo, 1996) 

provided different sets of minimal conditions, directly on the demand and cost 

functions, yielding respectively the simultaneous and the two sequential modes of 

play.  

 

1.2 Motivating example 

In this scenario, we will suppose that the market for a certain product is 

dominated by two firms, one plays a dominant role. An example might be 

Volkswagen, at times big enough. Followers are: Fiat, Peugeot, etc.Segments are 

established based on comparison to well-known brand models. For instance, we 

will focus on cars classified in four segments: 1) Large – cars are greater speed, 

capacity and occupant protection are safer designed, 2) Medium - cars are drawn 

with a sedan shape designed to seat four to six passengers comfortably 3) Small - 

cars that refer to the hatchbacks and shortest saloons marketed at low price, and 4) 

Mini – cars is limited to approx. 3,700 millimeters. 

The companies can choose to produce a certain quantity of the product 

depending on the segment: Large, Medium, Small and Mini. Quantities will be 

denoted by (L, M, S, I) for producer 1 and (l, m, s,i) for producer 2.  Actions taken 

by the producer depend on the segment and are determined by: high, medium, low. 

The market price of the product decreases with increasing total quantity produced 

by both producers. If the companies decide to produce a high quantity of the 

product, the price collapses so that profits drop to zero. Both companies know how 

increased production lowers product price and their profits. The utilities are as 

follows 

 

Co.I\ Co.II large medium small (i)mini 

Large 20,13 23,15 36,17 62,10 

Medium 15,23 32,32 40,30 64,20 

Small 18,36 30,40 36,36 54,20 

(I)Mini 19,52 14,34 16,48 5,10 

 

The leader-follower company dynamic version of the game is as follows: 

Company I plays first and optimal commit to a level of production given by a row. 



 

 

 

 

 

 

 

Julio B. Clempner, Alexander S. Poznyak 

______________________________________________________________ 

 

44 

 

 
 

It follows that by backward induction strategy of Company II will respond to L by 

s, to M by m, to L also by m, and to I by l. By looking ahead these anticipated 

best-reply by Company II, Company I does optimal play L, thehighest level of 

production. Then, the result is that Company I makes a profit 36 (in contrast to the 

32 in the simultaneous-choice game). When Company II must play the role of the 

follower, its best-reply profits fall from 32 (in the simultaneous-choice game) to 

17. As a result, the Stackelberg equilibrium of the game is (L,s). 

 

1.3 Main results 

This paper presents a new game theory approach for representing the 

Stackelberg duopoly model.  

 We consider the case where a SSE point is convenient for both firms.  

 The problem is fitted into a class of discrete-time, ergodic, controllable and 

finite Markov chains games.  

 We restrict the attention of the game to Markov pure and stationary fixed-local-

optimal strategies (Clempner and Poznyak, 2014) for the leader and the 

follower that agree with the equilibrium point.  

 In order to represent the game with a strong Stackelberg equilibrium point, we 

propose a non-converging state-value function that fluctuates (increases and 

decreases) between states of the stochastic game.  

 We prove that it is possible to represent that function in a recursive format 

using a one-step-ahead fixed-optimal policy.  

 The method looks for an optimal strategy of the leader firm that coincides with 

the best-reply strategy, finding the highest reward strategies and exploiting the 

advantage of being the leader firm.  

 Then, we present a method for constructing a Lyapunov-like function that 

explains the behavior of players in a repeated stochastic Markov chain game.  

 The Lyapunov-like function replaces the recursive mechanism with the 

elements of the ergodic system that model how players are likely to behave in 

one-shot games.  

 Then, the classical Stackelberg duopoly game is transformed into a potential 

game in terms of the Lyapunov theory.  

 As a result, a duopoly model has the benefit that the best-reply dynamics 

results in a natural implementation of the behavior of a Lyapunov-like 

function.  

 In addition, the strong equilibrium point properties of Stackelberg and 

Lyapunov meet in potential games. 

 

1.4 Organization of the paper 

The paper is organized as follows. The next section contains the formal 

definition of the oligopoly model considered and the mathematical background 
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needed to understand the rest of the paper. In Section 3, we present a game theory 

approach for representing the Stackelberg duopoly model. Section 4 contains the 

theoretical results showing that the best-reply dynamics results in a natural 

implementation of the behavior of a Lyapunov-like function and that the Lyapunov 

equilibrium point coincides with the SSE point, which we consider to be the main 

contribution of this paper. Section 5 shows the experimental results related to the 

Stackelberg duopoly model. Finally, in Section 6 some concluding remarks are 

outlined. 

 

2. Background and related work 

The aim of this section is to introduce the duopoly model and all the 

structural assumptions related with the Markov model (Poznyak et al., 2000). 

 

2.1 Basics 

Firms are looking for maximum benefits. The benefits are derived from 

both maximum sales volume (a larger share of the market) and higher prices 

(higher profitability). The problem is originated by the fact that increasing 

profitability through higher prices can reduce the revenue by losing market share. 

What Cournot’s approach (Cournot, 1938) does is to maximize both market share 

and profitability by defining optimum prices. Stackelberg games (von Stackelberg, 

1934) draw attention to the fact of having truthful market information when 

defining a strategy, and the interdependence of each firm’s strategies, when there is 

a market leader firm. 

The dynamic of the game is described as follows. We consider {1,2}=N  

firms in the industry. Firms make the same homogeneous and undifferentiated 

product and choose a quantity to produce independently and sequentially. The 

single homogeneous product is sold in the market with a constant marginal cost. 

The firms do not collude, and they seek to maximize their profit based on their 

competitors' decisions. Each firm's output decision is assumed to affect the product 

price. 

The game has a finite set S , called the state space, consisting of all 

positive integers NN  of states     Nss ,...,1  and it begins at the initial state (1)s  

which (as well as the states further realized by the process). All the states are 

organized in a stationary Markov chain, which is a sequence of S -valued random 

variables ,ns ,Nn  satisfying the Markov condition: 

  )(=)(=|)(=1 ijissjssp nn   (1) 

The Markov chain can be represented by a complete graph whose nodes 

are the states, where each edge 2))(),(( Sjsis   is labeled by the transition 

probability (1). The matrix SS
Sjsisij 

  0,1]))((= ))(),((  determines the evolution 
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of the chain: for each Nk , the power k  has in each entry ))(),(( jsis  the 

probability of going from state )(is  to state )( js  in exactly k  steps. 

A Markov Decision Process is a 5-tuple  

},,,,{= UASMDP K  (2) 

where: 1) S  is a finite set of states, NS ; 2) A  is the set of actions. For each 

,Ss AsA )(  is the non-empty set of admissible actions at state Ss . Without 

loss of generality we may take )(sAA Ss= ; 3)  )(,|),(= sAaSsas K  is the set 

of admissible state-action pairs, which is a finite subset of AS ; 4) 

   )|(= kijk   is a stationary transition controlled matrix, where  

))(=),(=|)(=()|( 1 kaaissjsspkij nnn  (3) 

representing the probability associated with the transition from state )(is  to state 

)( js  under an action )),(()( isAka  Mk 1,...,=  and; 5) RK SU :  is a utility 

function, associating to each state a real value. 

The Markov property of the decision process in (2) is said to be fulfilled if  

))(=),(=),,...,,(|( 1211 kaaissssssp nnnn  ))(=),(=|(= 1 kaaisssp nnn   

Each firm   is allowed to randomize, with distribution )|()(


 ikdn , over the 

pure action choices )),(()( isAka   Ni 1,=  and Mk 1,= . Formally, the strategy 

(policy) ))(=|)(()|( )()()()(





 isskapikd nn  which represents the probability measure 

associated with the occurrence of an action 
)(

na  from state )(=)(


 issn . 

For a strategy tuple ),...,(= |)(|(1) Nddd  we denote the complement 

strategy ,,...,(= 1)((1))(   ddd ),..., |)(|1)( Ndd   and, with an abuse of notation, 

),(= )()(  ddd . The state ),...,(= |)(|(1) Nddd  represents the distribution vector of 

strategy frequencies and can only move on  . 

)|())(=),(=|)(=(=))(=|)(=( )()()()(
1

1=

)()(
1 



















 ikdkaaissjsspissjssp nknn

M

k

nn    

Let us denote the collection  )|( ikdn  by n  as follows:

 
NiMknn ikd

1,=,1,=
)( )|(= 
 . A policy 

0n
loc
n  is said to be local optimal if for each 

0n  it minimizes the conditional mathematical expectation of the utility-function 

)( 1
)(

nsU   under the condition that the prehistory of the process  

   ;...;=,{:=
1,=00 Njn jssPF    

Njnn jssP
1,=1 =,  
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is fixed and cannot be changed hereafter, i.e., it realizes the “ one-step ahead” 

conditional optimization rule  nn

n
d

loc
n FsU

n

|)(Emaxarg:= 1
)(







 where )( 1

)(
nsU   is the 

utility function of the player   at the state 1ns . Locally optimal policies are known 

as a "myopic" policies in games literature. 

A non-cooperative game is a tuple       NNNNG   






 US ,,,,,= . 

Applying the conditional transition probability matrix given in (3) changes the 

conditional probability distribution at time n  from ))(=|)(( )()()( isskap nn
 to 

))(=|)(( )(
1

)()(
1 isskap nn


 . The probability of the player N  in the game G  to find 

itself in the next state is as follows:  

=))(=|)(=( )()(
1

)(





 issjssp nnn  =)|())(),(=|)(=( )()()()(
1

)(

1=

















ikdkaissjssp nnnn

M

k



)|()|( )()(

1=











 ikdkji nn

M

k

  

 

In the ergodic case when the Markov chain is ergodic for any stationary 

strategy )|()(


 ikdn  the distributions ))(=( )(
1

)(


 jssp nn   exponentially fast converge to 

their limits ))(=( )()(


 issp satisfying 

=))(=( )()(


 jssp ))(=()|()|( )()()()(

1=1=


















 isspikdkji nn

M

k

N

i

  

 

The market determines the price at which an output is sold by RK S:)(P , 

where )|,()(


 kjiP  is commonly-known non-increasing function of total output 

and denotes the inverse demand function. Cost to firm   of producing units is 

given by RK S:)(C , where )|,()(


 kjiC  is nonnegative and nondecreasing in 

S (the cost functions are assumed to be the same for all firms). Profit of firm   is 

given by 

)|,()|,()|,(=),,( )()()()(











 kjikjikjikjiU CQP   

and if 

)|,(),,(=)|,( )()()(








 kjikjikji QPR  

we have that 

)|,()|,,(=),,( )()()(








 kjikjikjiU CR   

 The utility function )(
U  of any fixed policy )(d  is defined over all possible 

combinations of states and actions, and indicates the expected value when taking 
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action )(a  in state )(s  and following policy )(d  thereafter. In this sense, the 

average utility function at the state s  for the firm  , namely, 

)|)((E:=)( )()()()(  dsUdU where )()( sU   is the utility function of the  -firm at the 

state s  and, )|(E )(d  is the operator of the conditional mathematical expectation 

subject to the constraint when the mixed strategy )(d  has been applied. 

 

2.2 Parameters of the Model 

In a Stackelberg game the leader considers the best-reply of the follower, 

i.e. how it will respond once it has observed the “optimal” strategy of the follower. 

We assume that the number of agents in the model is two ( {1,2}=N ). Player

should be understood to refer to players in a general expression of the game. For 

the remainder of this paper, the leader firm is designated as player (1) and the 

follower firm as player (2) . Let introduce the notations for the model. 

Parameters of the firms :  N  - The number of states of firm  ; M - The 

number of actions of firm  ;   
 kji |)(  - The elements of the transition matrix of 

firm  ; )|,()(


 kjiP  - The elements of the price matrix of firm  ;  )|,()(


 kjiQ  - 

The quantity of elements of firm  ;   
 kji |,)(C  - The elements of the cost matrix 

of firm  ;  )|()(


 ikd  - The probability for a firm   to apply action k  at state i . 

Then, the U -values of the leader firm can be expressed by 

)|()|(),,,(=),( 22
(2)

11
(1)

2211
(1)

2

1=
2

2

1=
2

1

1=
1

1

1=
1

(2)

2
,

2

(1)

1
,

1

(1) kickickikiWcc

M

k

N

i

M

k

N

i

kiki U  

 

(4) 

where 

)|,(),,,,,(=),,,( 111
(1)

222111
(1)

2

1=
2

1

1=
1

2211
(1) kjikjikjikikiW

N

j

N

j

CR   

 

and 

)()|(=)|( 1
(1)

11
(1)

11
(1) ipikdkic )()|(=)|( 2

(2)
22

(2)
22

(2) ipikdkic   

as well as for the follower firm we have 

),(),(),,,(=),( 22
(2)

11
(1)

2211
(2)

2

1=
2

2

1=
2

1

1=
1

1

1=
1

(2)

2
,

2

(1)

1
,

1

(2) kickickikiWcc

M

k

N

i

M

k

N

i

kiki U  

 

and the variable )|()(


 kic  is restricted by the following constraints:  
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 






















)|()|,(=)|(

0,)|(:)|(1,=)|(

:=

1=1=1=

1=1=

)()(








































 kickjikjc

kickickic

Cc

n

M

k

N

i

M

k

n

M

k

N

i

adm  

 

Loosely speaking, a necessary and sufficient condition for )|( 
 kic  to be a 

Stakelberg/Cournot equilibrium point is that the solution of the following problem 

max),(
)()(

(2)(1)





adm
Cc

cc


U   

The solution we apply to this game is that of Stackelberg equilibrium. To think 

about the leader-follower equilibrium point, we first consider the nature of the 

firms’ local best-reply strategy. 

 

3. Stackelberg Duopoly Model 

The dynamics of the Stackelberg game is as follows. The leader Company 

plays first considering the best-reply of the follower (2)d . Then, the leader 

commits to a mixed strategy *(1)
d (a probability distribution over deterministic 

schedules) that maximizes the utility, anticipating the predicted best-reply of the 

follower. Then, taking into the account the adversary's mixed strategy selection, the 

follower in equilibrium selects the expected best-reply that maximizes the utility
(2)d .  

 

3.1 Local Best-reply Strategy Definition for the Follower Firm 

In this situation, the leader firm looks one-step-ahead to the best-reply of 

the follower firm and the effect that it will have on the duopoly equilibrium. 

Definition 1.The strategy 

 
  )|,()|,(|,((maxarg:=)|( 222

(2)
222

(2)
222

)2(
2

1=
2

1

1=
1

1

1=
1

1

1=
12

|
2

(2)
22

(2) kjikjikjiikd

N

j

N

j

M

k

N

iikd

CQP 

 

)|())|()|()|,( 11
*(1)

22
(2)

222
(2)

111
(1) ikdikdkjikji   

 

such that 

0)|(1,=)|( 22
(2)

22
(2)

2

=1
2

 ikdikd

M

k

 
 

is called the local best-reply strategy for the average follower firm.  
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Lemma 1 (Clempner and Poznyak, 2013)The local best-reply strategy 

 22
(2) | ikd   for the follower firm is pure and stationary, that is, 
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3.2 Markov Chains Dynamics for the Average Follower Firm 

For the local best-reply strategy  22
(2) | ikd   we have the following 

Markov chain dynamics for the average follower firm: 
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3.3 Market Leader’s Firm Utilities Optimization 

The leader then selects a strategy that maximizes its utility, anticipating the 

predicted response of the follower. Then, for the given strategies  11
(1) | ikd  and 

 22
(2) | ikd   the average utility of the leader is given by 
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)|( 111
(1) kjiU is the highest utility of leader firm (1)  at state )( 1

(1) is  when the action 

 1
(1) ka  is applied while the follower firm (2)  select the worse response. In other 

words, the leader maximizes his payoff under the “ pessimistic” supposition that 

the followers act to his disadvantage. This pessimistic supposition is used to the 

define a “ Stackelberg payoff” to the leader in dynamic games (Basar and Olsder, 
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1982). 

Notice that by Lemma 1 it follows 
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3.4 Local Optimal Best-reply Stackelberg Strategy of the Leader Firm 

The optimal Stackelber leader’s firm strategy is the solution of the following 

optimization problem 
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(7) 

Denote the solution of the optimization problem (6)-(7) by )|( 11
(1) kic  . 

Lemma 2 (Clempner and Poznyak, 2013)The solution )|( 11
(1) kic   of the 

optimization problem (6)-(7) coincides with the best-reply strategy 
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Remark 1 For any Stackelberg game if the follower follows a Markov pure 

stationary strategy, then there exists a Markov pure stationary strategy that is the 

optimal strategy for the leader. 

3.5 Markov Chains Dynamics for the Leader Firm 

For the local best-reply strategy  11
(1) | ikd   we have the following Markov 

chain dynamics for the leader firm: 
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3.6 Strong Stackelberg Equilibrium and the Average Utilities 

For any leader firm policy, the follower firm plays the best-reply policy 

defined as follows: 

  )|(maxarg=)|( 22
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The leader’s optimal policy is then 
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In our Stackelberg model, the leader firm chooses a strategy first, and the follower 

firm chooses a strategy after observing the leader’s choice. Then, the pair 

    ))|(),|((= 222
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(1) iikdiikdd   forms a Stackelberg equilibrium. The same 

point d  conforms a Strong Stackelberg Equilibrium (SSE) if both the leader firm 

and follower firm choose an optimal strategy and, in addition, the follower firm 

breaks ties optimally for the leader: ),(>),( (2)(1)(2)(2)(1)(1)  dddd UU where (2)d  is 

the follower firm best-reply to (1)d . 

The average leader utility under the strategies (1)c , (2)c  is given by 
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At the end, the follower observes the strategy that maximizes the leader 

utility and in equilibrium selects the expected strategy as a response. Then, the 

average follower utility under the strategies  (2)(1) ,cc  is given by 
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4. Computing the Lyapunov Equilibrium Point 

The aim of this section is to associate to any utility function (1)
nU  a 

Lyapunov-like function which monotonically increases (non-decreases) on the 

trajectories of the given system (Clempner and Poznyak, 2013). 
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4.1 Utility Function Value Iteration 

In vector format, the utility can be expressed as 
(1)(1)(2)(1)(1) ,=),( nncc pwU
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Let us introduce the following general definition of Lyapunov-like 

function. 

Definition 2 Let RS:V   be a continuous map. Then, V  is said to be a 

Lyapunov-like functioniff it satisfies the following properties : 
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As a result we can state the following lemma. 
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Lemma 3 Given a fixed-local policy, the U -values iteration for all state-action 

pairs from (4) become (1)(1)(1)
1 ,= nn pwU
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4.2 Recurrent Form for the Utility Function 

Let us represent (1)
1nU  as follows 
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Now we are ready to formulate the main result of this paper. 

 

4.3 Lyapunov and Strong Stackelberg Equilibrium 
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which leads to the following statement. 

Theorem 1 Let       NNNN   






 USG ,,,,,= be a duopoly Stackelberg 

game and let (1)
1nU be represented by the recursive matrix format of Eq. (9). Then, a 
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that proves the result.  

Remark 2Following a similar development for the follower firm we have 
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Definition 3. A Lyapunov game is a tuple       NNNN   
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where 
U  is a Lyapunov-like function (monotonically increasing in time).  
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(1) iikdiikdd  is a strong Stackelberg 

equilibrium point then the maximum is asymptotically approached (or the 

maximum is attained) by the Lyapunov-like function U , i.e. 0=)( dU  or 

Constd =)( 
U , where Const is a constant. 
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Proof. Suppose that d  is a equilibrium point. We want to show that U  has an 

asymptotically approached infimum (or reaches a minimum). Since, d  is an 

equilibrium point by Definition 2 cannot be modified. Then it follows that the 

strategy attached to the action(s), following d , is 0. Let us consider the value of 

U  cannot be modified. Since the Lyapunov-like function is a increasing function 

of the strategies d  (by Definition 2) an infimum or a minimum is attained in d .  

 

Theorem 3 The fixed-local-optimal strategy   ),|((= 111
(1) iikdd    ))|( 222

(2) iikd   

is a strong Stackelberg equilibrium point.  

Proof. Let suppose that there exist a strategy     )|()|( 222
(2)

222
(2) iikdiikd ''   such 

that   ),|(( 111
(1) iikd    ))|( 222

(2) iikd '   is an equilibrium point. Then, 

    ))|(),|(( 222
(2)

111
(1) iikdiikd ''

U >   ),|(( 111
(1) iikd 

U   ))|( 222
(2) iikd   by Definition 

3, but it is a contradiction to Theorem 2 and the fact that   )|( 222
(2) iikd   is fixed-

local-optimal strategy. As well as, let suppose that   )|( 222
(2) iikd ''

 is a best-reply 

strategy to     )|()|( 111
(1)

111
(1) iikdiikd '    and     ))|(),|((= 222

(2)
111

(1) iikdiikdd '''''  is 

an equilibrium point. Then, )>) dd '
U(U( , but it is a contradiction to Theorem 2 

and the fact that   )|( 111
(1) iikd   is fixed-local-optimal strategy. 

Corollary 1 The Lyapunov-like function converges to a unique strong Stackelberg 

equilibrium     ))|(),|((= 222
(2)

111
(1) iikdiikdd  . 

Proof. Let us suppose that d  is not an equilibrium point. Therefore, it is possible 

to apply an output strategy to d . Then, it is possible to modify the utility over d . 

As a result, it is possible to obtain a higher utility, i.e. 0>)( dU or Cd >)( 
U . It is 

a contradiction to Theorem 4.3 and the fact that d  is fixed-local-optimal strategy. 

Theorem 4 The Lyapunov equilibrium point coincides with the strong Stackelberg 

equilibrium point. 

Proof. Straightforward from Theorem 1, 2 and 3. 

 

5. Numerical Example 

In this Section we implement the example presented in Subsection 1.2. The 

segmentation of the car market is represented in Figure 1.Let 4=1N  and 4=2N  

be the number of states and 3=1M and 2=2M  be the number of actions of the 

Leader and the Follower respectively. The utility for the companies 1,2=  are as 

follows 
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

















5161419

54363018

64403215

62362320

=),,((1) kjiU



















10483452

20364036

20303223

10171513

=),,((2) kjiU  

and let the transition matrix for Company 1 identified by 1,2,3=1k  be as follows  



















0.71720.06070.00660.2154

0.02700.00000.54050.4324

0.00000.98590.00120.0129

0.08970.89690.00130.0121

=,1),((1) ji



















0.021213140.0.020282730.

0.08930.00890.09010.8117

0.00010.98500.00000.0149

0.02020.96580.00130.0127

=,2),((1) ji

 



















0.00040.014608270.90230.

0.16530.00020.00000.8346

0.00010.85590.00000.1440

0.00010.90390.02570.0704

=,3),((1) ji  

Figure 1.Markov chain car market segmentation 

 

 

 

 

 

 

 

 

 

 

and let the transition matrix for Company 2 given by medium and low actions are 

identified by 1,2=2k  be defined as follows 
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

















0.00000.04060.00670.9527

0.62310.05750.00010.3193

0.00010.95760.00000.0423

0.00010.80060.12560.0738

=,1),((2) ji



















860.08530.08820.0081790.

0.01490.00480.00940.9710

0.01110.87780.00050.1106

0.00080.93760.02460.0370

=,2),((2) ji

 

For the best-reply strategies (1)d  and (2)d  we have the following results (see, 

Clempner and Poznyak, 2014): 





















0.000401460.08270.90230.

0.02700.00000.54050.4324

0.00000.98590.00120.0129

0.08970.89690.00130.0121

=(1)





















0.00000.04070.00670.9527

0.01490.00480.00940.9710

0.00010.95760.00000.0423

0.00080.93760.02460.0370

=(2)  

[1,1,1,3]=1
k , [2,1,2,1]=2

k , 0.9224 =2,= (1)(1)
0 ergn  , 0.9199=2,= (2)(2)

0 ergn   

]18.53665.4596,,39.6683,238.1216[=(1)w , ,51.7171]35.7990,29.7028,16.7971[=(2)w  

We show in Figure 2 and Figure 3 the state-value function behavior for 

both firms leader and follower and, in Figure 4 and Figure 5 the corresponding 

Lyapunov-like functions. The numerical results clearly show that under the same 

fixed-local-optimal strategy the original utility functions converge non-

monotonically to the value, for the leader company, 31.8387 and the corresponding 

Lyapunov-like functions converge monotonically to the value 31.8387. As well as, 

for the follower company, 26.2819 and the corresponding Lyapunov-like functions 

converge monotonically to the value 26.2895 respectively which, obviously, are 

very close. We also concluded from the numerical example that the Lyapunov 

equilibrium point coincides with the SSE point. 

 

Figure 2 Non-monotonic behavior of 

the Leader Firm. 

Figure 3.Lyapunov-like function for 

the Leader Firm. 
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Figure 4. Non-monotonic behavior of 

the Follower Firm. 

Figure 5.Lyapunov-like function for 

the Follower Firm. 

  
 

6. Conclusion 

This paper suggested an approach where the classical Stackelberg duopoly 

game is transformed into a potential game in terms of the Lyapunov theory.It 

focused on a general class of ergodic controllable finite Markov chains game for 

representing Stackelberg duopoly game. The paper confronts a fundamental 

question of equivalent convergence of different equilibrium points. In this context, 

this paper provides four key contributions. First, we present a method to represent 

a non-converging state-value function that fluctuates (increases and decreases) 

between states of the stochastic game in a recursive format. Second, we propose a 

Lyapunov-like function that replaces the recursive mechanism with the elements of 

the ergodic system. Third, our main result (Theorem 4) states that the Lyapunov 

equilibrium point coincides with the SSE point (which is the Cournot equilibrium 

point). Fourth, our experimental results emphasize positive the coincidence of the 

equilibrium points.  
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