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Abstract. In this paper, the optimal reinsurance contract design problem for 

catastrophe insurance is studied using the general structure of reinsurance 
contracts, change-loss reinsurance. Closed-form solutions are derived under two 

tail risk measures, Value-at-Risk (VaR) and Conditional Tail Expectation (CTE). 

The results show that CTE is a robust risk measure in that the structure of the 

optimal reinsurance contract under CTE measure is always change-loss 
reinsurance. While the optimal reinsurance contract under VaR measure 

degenerates from change-loss reinsurance to quota-share reinsurance when the 

ceding company is less risk averse. The theoretical approach is also applied to 
earthquake insurance market in China’s Yunnan Province, and explicit solutions to 

the optimal reinsurance contract design problem under both VaR and CTE 

measures are obtained in the paper.  

Keywords: Catastrophe Insurance; Change-Loss Reinsurance; Contract 
Design; Value-at-Risk; Conditional Tail Expectation. 
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1. Introduction 
The problem of optimal reinsurance contract design has drawn significant interest 

since the fundamental work of Borch (1960) and Arrow (1963). Assuming that the 

reinsurance premium follows expected value principle, Borch (1963) showed that 
stop-loss reinsurance minimizes the variance of the retained loss, and Arrow (1963) 

proved that stop-loss reinsurance maximizes the expected utility of the terminal 

wealth of a risk-averse insurer. The following research can be mainly divided into 

three types, (a) extending the family of risk premiums, (b) extending the family of 
risk measures, and (c) extending both.  

The first type of research is devoted to investigating the optimal reinsurance 

problem using different premium principles. Kaluszka (2001) considered 
mean-variance premium principle, and Kaluszka (2005) used convex premium 
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principles (exponential, semi-deviation and semi-variance, etc.) in analysis, 

respectively. Tan et al. (2009) investigated 17 reinsurance premium principles and 
established the sufficient and necessary (or just sufficient) conditions for the 

existence of the nontrivial optimal reinsurance in several cases. Cheung (2010) and 

Chi and Tan (2013) extended the problem with a family of general risk premiums.  

The second type of research is dedicated to studying the optimal reinsurance 
problem under different risk measures. Among them, the tail risk measures are the 

most popularly used in recent years. Cai and Tan (2007) calculated the optimal 

retention level for stop-loss reinsurance using the Value-at-Risk (VaR) and 
Conditional Tail Expectation (CTE) risk measures. Following Cai and Tan’s work, 

A series of research has been focused on obtaining the optimal reinsurance contract 

under VaR measure or CTE measure using different reinsurance structures (See 
Bernard and Tian (2009), Chi and Tan (2011), Tan and Weng (2012), Tan and Weng 

(2014), Cai et al. (2014), etc.) Some other risk measures are also used in literature. 

For example, Chi and Lin (2014) studied the problem from the perspective of an 

insurer, where an upper limit is imposed on a reinsurer’s expected loss over a 
prescribed level. Cheung et al. (2014) have extended the problem by using general 

law-invariant convex risk measures, and compared the optimal reinsurance contract 

with the ones under the VaR and CTE risk measures. Asimit et al. (2015) studied the 
optimal non-life reinsurance problem by minimizing the risk exposure under 

Solvency II regime. Liang and Yuen (2016) studied the optimal proportional 

reinsurance problems under the criterion of maximizing the expected exponential 

utility. 
Some recent studies also investigated the problem by extending both the risk 

premiums and the risk measures. Cheung et al. (2012) considered the optimal 

reinsurance problem using Wang’s premium principle subject to the insurer’s 
budget constraint and the reinsurer’s ruin probability constraint under CTE measure. 

Cui et al. (2013) discussed the optimal reinsurance problem with the insurer’s risk 

measured by distortion risk measure and the reinsurance premium calculated by the 
Wang’s premium principle. Cong and Tan (2014) analyzed VaR based optimal risk 

management solution using reinsurance under a class of premium principles that is 

monotonic and piecewise. Cheung and Lo (2015) followed Cui et al. (2013), and 

investigated the characteristics of the optimal reinsurance contract. Zhuang et al. 
(2016) combined the Marginal Indemnification Function (MIF) formulation and the 

Lagrangian dual method to solve optimal reinsurance model with distortion risk 

measure and distortion reinsurance premium principle.  
Though existing research has considered many factors in the reinsurance 

contract design problem, none of them have dig into the specific heavy-tailed 

catastrophe insurance market. Unlike conventional insurance losses, catastrophe 
losses are always characterized by heavy tailed distributions, which makes the setup 

for catastrophe reinsurance different, not only in the premium principles, but also in 

risk measures. In this paper, we try to obtain the optimal reinsurance contract for 

catastrophe insurance using the general form of reinsurance contracts, change-loss 
reinsurance. (1) For premium principles, the heavy tail property of catastrophe 
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losses makes the premium principles that include the calculation of variance or even 

higher moments of the losses, such as mean-variance premium principle, not 
applicable. Therefore, only the expected value principle can be used in the 

calculation of the premium. (2) For risk measures, the heavy tail property indicates 

that there are chances that some extremely large losses may occur, which may have 

huge impact on the insurance company’s solvency level. Therefore, the insurance 
company should pay more attention to the tail risk. Two tail risk measures, 

Value-at-Risk (VaR) measure and Conditional Tail Expectation (CTE) measure are 

used in the paper in designing the optimal catastrophe reinsurance plans, and 
closed-form solutions are derived. The results show that CTE is a robust risk 

measure in that the structure of the optimal reinsurance contract under CTE measure 

is always change-loss reinsurance. While the optimal reinsurance contract under 
VaR measure degenerates from change-loss reinsurance to quota-share reinsurance 

when the ceding company is less risk averse. Application of the model in earthquake 

insurance market in China’s Yunnan Province is also studied in this paper. Optimal 

reinsurance contracts are designed under both VaR measure and CTE measure, and 
explicit solutions are derived.  

The paper is organized as follows. In section 2, the optimal reinsurance 

contract design problems using VaR and CTE measures are investigated into. In 
Section 3, an application of the model in earthquake insurance in China’s Yunnan 

province is studied. Section 4 concludes the paper.  

2. Optimal Catastrophe Reinsurance Contract Design 

2.1. Reinsurance Contract 

Let 𝑋  denote the catastrophe event loss, and 𝑔(𝑋)  denote the ceded loss 

function, and 𝑃(𝑔(𝑋)) be the corresponding reinsurance premium. The total risk 

exposure of the insurance company is 𝑇(𝑋) = 𝑋 − 𝑔(𝑋) + 𝑃(𝑔(𝑋)) . Under 

reinsurance premium constraint 𝜋, the goal of the insurance company is to minimize 

the total risk 𝜌(𝑇(𝑋)), where 𝜌(⋅) is a specific risk measure.  

The optimization problem for the insurance company can be stated as below,  

 min
𝑓

𝜌 (𝑇(𝑔(𝑋))) (1) 

 𝑠. 𝑡.  𝑃(𝑔(𝑋)) ≤ 𝜋 (2) 

 0 ≤ 𝑔(𝑋) ≤ 𝑋 (3) 

Eq. (3) is a natural restriction of the optimization problem, the ceded loss 

cannot be larger than the loss incurred by the insurance company since the insurance 
company cannot make profit by ceding the losses.  

To specify the optimization problem, three factors should be taken into 

consideration:  
(1) The form of the reinsurance contract  

Various types of reinsurance contracts have been developed. Two most 

commonly used types of reinsurance contracts are:  
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A) Stop-loss reinsurance  

 𝑔(𝑋) = (𝑋 − 𝑑)+ (4) 

where 𝑑 ≥ 0 is the deductible.  

B) Quota-share reinsurance  

 𝑔(𝑋) = 𝑐𝑋 (5) 

where 0 < 𝑐 < 1 is the proportitional parameter denoting the share the total 
losses the reinsurance company is covering.  

In practice, reinsurance is always more complicated. A combination of 

stop-loss reinsurance and quota-share reinsurance, which is named as change-loss 
reinsurance, is frequently used. change-loss reinsurance is defined as below:  

C) Change-loss reinsurance  

 𝑔(𝑋) = 𝑐(𝑋 − 𝑑)+ (6) 

where 0 < 𝑐 ≤ 1 is the proportitional parameter and 𝑑 ≥ 0 is the deductible.  

Note that stop-loss reinsurance corresponds to the case 𝑐 = 1  while 

quota-share reinsurance corresponds to the case 𝑑 = 0. With condition 0 < 𝑐 ≤
1; 𝑑 ≥ 0, condition (3) can be satisfied.  

The parameters 𝑐, 𝑑 are commonly defined as constants in practice, while in 
some other cases, they can be also be variable. For example, the reinsurance 

company may want to avoid taking too much responsibility when a sufficiently large 

amount of loss occurs, thus the proportion of loss the reinsurance company is willing 

to cover, i.e. 𝑐, can be a decreasing function of loss 𝑋. In this paper, we only 

consider the case of constant parameters, other cases can be analyzed similarly.  

(2) The calculation of the reinsurance premium  

Assuming that the general premium principle applies here,  

 𝑃((𝑔(𝑋)) = 𝐸(𝑔(𝑋)) + 𝐶(𝑔(𝑋)) (7) 

where 𝐶(⋅)  is the cost function, including the fees and profits. The 

mean-variance premium principle assumes that the cost function is related to the 
standard deviation or variance of the ceded loss. Two commonly used forms of the 

mean-variance premium are,  

 𝐶(𝑔(𝑋)) = 𝛽 ⋅ 𝐷(𝑔(𝑋)) (8) 

and  

 𝐶(𝑔(𝑋)) = 𝛽 ⋅ 𝐷2(𝑔(𝑋)) (9) 

where 𝐷(⋅) denotes the standard deviation function, and 𝐷2(⋅) denotes the 

variance function.  
However, neither of the two premium principles can be used in catastrophe 

insurance due to the non-existence of the variance caused by the heavy tail property. 

In catastrophe risk modeling, the heavy tail property of catastrophe losses makes the 

common distributions like the lognormal distribution, the Gamma distribution, or 
the Weibull distribution not applicable in fitting the loss data. Following Embrechts 

et al.(1997), the heavy-tailed distribution, Generalized Pareto Distribution (GPD), is 

used to fit the loss data.  

Given threshold 𝜇, the CDF of GPD is defined as,  
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 𝐹𝑋(𝑥) = 1 − (1 + 𝜉
𝑥 − 𝜇

𝛼
)
−
1

𝜉
 𝑥 > 𝜇, 𝜉 ≠ 0 (10) 

where 𝜉, 𝛼 are the shape parameter and the scale parameter, respectively.  

The variance of GPD exists if and only if 𝜉 < 1/2, which can not be satisfied 

in catastrophe insurance.  

Assuming that the cost function can be denoted as a proportion of the 

expectation of the ceded loss 𝐶(𝑔(𝑋)) = 𝜃 ⋅ 𝐸(𝑔(𝑋)), where 𝜃  is the loading 
factor. Therefore, the reinsurance premium can be derived as,  

 𝑃(𝑔(𝑋)) = (1 + 𝜃) ⋅ 𝐸(𝑔(𝑋)) (11) 

= (1 + 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

] 

It can be see that the relationship between the reinsurance premium and the 

proportion parameter 𝑐 is simply linear. The total risk exposure of the insurance 

company can be derived as,  

 𝑇(𝑔(𝑋)) = 𝑋 − 𝑔(𝑋) + 𝑃(𝑔(𝑋)) (12) 

= 𝑋 − 𝑐(𝑋 − 𝑑)+ + (1 + 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

] 

With parameters 𝜃 = 0.2, 𝑐 = 0.6, 𝑑 = 5 × 1010, and GPD parameters 𝛼 =
5 × 108, 𝜉 = 0.98, 𝜇 = 1 × 108, Relationship between the ceded loss, retained loss, 

and the total risk exposure for different loss amount 𝑋 can be seen in Figure 1.  
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Figure 1: Ceded loss, retained loss and total loss 

 
(3) The risk measure used by the insurance company  

The heavy tail property of the catastrophe insurance losses reveals that there 
are chances that some extremely large losses may occur, which may even have huge 

effect on the solvency level. Therefore, the insurance company should pay more 

attention to the tail risk. To better measure the tail risk, the Value-at-Risk (VaR) 
measure and the Conditional Tail Expectation (CTE) measure should be used.  

VaR of a random variable 𝑍 at confidence level 1 − 𝑘,  0 < 𝑘 < 1, is defined 

as a threshold loss value as below,  

 𝑉𝑎𝑅𝑘(𝑍) = inf 𝑧 : 𝑃𝑟(𝑍 ≤ 𝑧) ≥ 1 − 𝑘 (13) 

In practice, the value of 𝑘  is typically very small, like 

5%,  2.5%,  1%,  0.1%,  𝑒𝑡𝑐 . By controlling the VaR of the loss payment, the 

insurance company can ensure with a high degree of confidence that the loss will not 
exceed the specific limit. Therefore, the VaR measure is able to reflect the tail risk of 

the loss, which is suitable for insurance companies that underwrites catastrophe 

insurance policies.  

However, there are also some drawbacks of VaR. For example, VaR is not a 
coherent risk measure since it violates the sub-additivity property. The inequality 

𝑉𝑎𝑅𝑘(𝑋) + 𝑉𝑎𝑅𝑘(𝑌) ≤ 𝑉𝑎𝑅𝑘(𝑋 + 𝑌)  does not necessarily satisfy. In addition, 

VaR is also criticized about its inadequacy in capturing the tail behavior of the loss 
distribution since the risk measure does not pay attention to very extreme losses 

above a specific threshold.  

The Conditional Tail Expectation (CTE), which is also called Tail 
Value-at-Risk, Average Value-at-Risk or Expected Shortfall, is a good alternative of 
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Value-at-Risk. CTE is defined as the conditional expectation of VaR with 
confidence level below some specific bound, denoted as below,  

 𝐶𝑇𝐸𝑘(𝑍) =
1

𝑘
∫ 𝑉

𝑘

0

𝑎𝑅𝛾(𝑍)𝑑𝛾 (14) 

Comparing to VaR, CTE is a coherent risk measure and it can better capture 
the tail risk. For a specific loss distribution, CTE is greater or equal to VaR at the 

same confidence level 𝑘, which helps the insurance company to pay attention to its 

extreme risks. However, the calculation of CTE is sometimes much more complex, 

and CTE is not that intuitive comparing to VaR. In practice, both VaR and CTE are 
widely used in estimating the tail risk, and both of the two measures are used to 

obtain the optimal reinsurance contract for the insurance company.  

Substituting in Eq. (6), Eq. (11) and Eq. (12) into Eq. (1), Eq. (2) and Eq. (3), 
the optimization problem can be rewritten as,  

min
𝑓

𝜌(𝑋 − 𝑐(𝑋 − 𝑑)+ + (1 + 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

]) 

(15) 

𝑠. 𝑡.  (1 + 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

] ≤ 𝜋 

(16) 

0 < c ≤ 1;  𝑑 ≥ 0 (17) 

where the risk measure 𝜌(⋅) can be either VaR or CTE.  

2.2. Optimal reinsurance contract under VaR measure 

The optimization problem can be specified by substituting Eq. (13) into Eq. (15) 

under the VaR measure. The VaR of total risk 𝑇(𝑋) at confidence level 𝑘 can be 

derived as,  

 
𝑉𝑎𝑅𝑘(𝑇(𝑋)) = 𝑃(𝑔(𝑋)) + 𝑑 + (1 − 𝑐) [

𝛼(𝑘−𝜉 − 1)

𝜉
+ 𝜇 − 𝑑] 

(18) 

where 𝑃(𝑔(𝑋)) is calculated by Eq. (11).  

Using method of Lagrange multipliers, the Lagrange function can be defined 
as,  

Λ1(𝑐, 𝑑, 𝜆) = 𝑉𝑎𝑅𝑘(𝑇(𝑋)) + 𝜆{(1+ 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

] − 𝜋} (19) 

Take first order conditions of Eq. (19) over 𝑐, 𝑑, 𝜆 respectively, and let the 
derivatives equal to 0.  

𝑐 −
𝑐𝛼1/𝜉(1 + 𝜃)(1 − 𝜉)(𝛼 + 𝑑𝜉 − 𝜇𝜉)−1/𝜉

1 − 𝜉
(1 + 𝜆) = 0 (20) 

𝑑 − 𝜇 −
(−1 + 𝑘−𝜉)𝛼

𝜉
+
𝛼

1

𝜉(1 + 𝜃)(𝛼 + 𝑑𝜉 − 𝜇𝜉)
1−

1

𝜉

1 − 𝜉
(1 + 𝜆) = 0 (21) 
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 (1 + 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

] − 𝜋 = 0 (22) 

Solving the equations,  

 𝑑∗ =
𝛼𝑘−𝜉(1 − 𝜉) + 𝜇𝜉 − 𝛼

𝜉
 (23) 

 𝑐∗ =
𝜋(1 − 𝜉)𝛼

−
1

𝜉

1 + 𝜃
(𝛼 + 𝑑∗𝜉 − 𝜇𝜉)

−1+
1

𝜉 
(24) 

From Eq. (23), it can be seen that the optimal deductible 𝑑∗ of the reinsurance 
contract does not depend on the premium limit, it only depends on the parameters of 

the loss distribution, and the confidence level 𝑘 of VaR measure.  

Figure 2 shows the relationship between the optimal deductible and the 

confidence level. The loss distribution parameters are derived from the GPD model 

with 𝛼 = 5 × 108 , 𝜉 = 0.95, 𝜇 = 1 × 108. The premium limit is set as 𝜋 = 2.5 ×
109, and the loading is set as 0.2.  

 

Figure 2: Relationship between 𝒅∗ and 𝒌 under VaR measure 

 
It can be seen from the figure that the deductible decreases when the confidence 

level 𝑘  increases. For a more risk averse insurance company, say use 𝑉𝑎𝑅0.01 

instead of 𝑉𝑎𝑅0.025, the amount of payments decreases to a large degree.  

From Eq. (23), the optimal 𝑑∗ is a constant for different VaR measures. The 

relationship between the proportion parameter 𝑐∗  and the premium limit 𝜋  is 

simply linear. To be more specific, 𝑐∗ is linearly related to the pure premium limit, 

i.e. 𝜋/(1 + 𝜃) . To see the relationship between 𝑐∗  and confidence level 𝑘 , 
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substitute Eq. (23) into Eq. (24),  

𝑐∗ =
𝜋(1 − 𝜉)𝛼

−
1

𝜉

1 + 𝜃
[𝛼𝑘

−
1

𝜉(1 − 𝜉)]
−1+

1

𝜉

= 𝑘−1+𝜉 ⋅
𝜋(1 − 𝜉)

1

𝜉

𝛼(1 + 𝜃)
 (25) 

Figure 3 shows the relationship between the optimal proportion 𝑐∗ and the 

confidence level 𝑘.  

 

Figure 3: Relationship between 𝒄∗ and 𝒌 under VaR measure 

 
Comparing Figure 2 and Figure 3, it can be seen that when the confidence level 

𝑘, changes, the change of the proportion 𝑐∗ isn’t that large as the deductible 𝑑∗. 
This can be proved by simply comparing 𝜕𝑐∗/𝜕𝑘 and 𝜕𝑑∗/𝜕𝑘. Intuitively, the 

heavy tail property of loss distribution has a larger impact on the loss percentiles, 

thus making the change of optimal deductible 𝑑∗ larger. For a loss distribution with 

heavy tail property, the difference between the 90𝑡ℎ loss percentile (𝑉𝑎𝑅0.1) and 

the 99. 9𝑡ℎ loss percentile (𝑉𝑎𝑅0.001) is much larger, thus the optimal deductible 

𝑑∗ for catastrophe reinsurance is much larger if the insurance company is more risk 

averse and uses 𝑉𝑎𝑅0.001 instead of 𝑉𝑎𝑅0.01 as the risk measure.  

Note that the deductible 𝑑∗ should be nonnegative, for a specific distribution 

𝐺𝑃𝐷(𝜇, 𝜎, 𝜉), with 𝜇𝜉 − 𝛼 < 0, the optimal deductible should be,  

 𝑑∗ = max {
𝛼𝑘

−
1

𝜉(1 − 𝜉) + 𝜇𝜉 − 𝛼

𝜉
, 0} (26) 

The maximum confidence level that makes the optimal deductible 𝑑∗ positive 
can be derived as,  
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𝛼𝑘
−
1

𝜉(1 − 𝜉) + 𝜇𝜉 − 𝛼

𝜉
> 0 ⟹ 𝑘 < [

𝛼 − 𝜇𝜉

𝛼(1 − 𝜉)
]
−1/𝜉

= 𝑘 (27) 

For 𝑘 > 𝑘, the optimal parameters 𝑐∗ , 𝑑∗ can be derived as,  

 𝑑∗ = 0 (28) 

 𝑐∗ =
𝜋(1 − 𝜉)𝛼

−
1

𝜉

1 + 𝜃
[𝛼 − 𝜇𝜉]

−1+
1

𝜉 
(29) 

With the parameters defined above, 𝑘 = 0.0533, and correspondingly 𝑑∗ = 0 

and 𝑐∗ = 0.206.  

Note that, with the confidence level greater than a specific level 𝑘, the optimal 

reinsurance contract remains the same, and is only related to the loss distribution 

(GPD) parameters, and the pure premium 𝜋/(1 + 𝜃).  

To summarize, the optimal contract under VaR measure is a change-loss 

reinsurance for small confidence level 𝑘, and a quota-share reinsurance for large 

confidence level 𝑘.  

2.3. Optimal reinsurance contract under CTE measure 

Under the CTE measure, the optimization problem can be specified by 

substituting Eq. [14] into Eq. [15]. The CTE of total risk 𝑇(𝑋) at confidence level 𝑘 

can be derived as,  

𝐶𝑇𝐸𝑘(𝑇(𝑋)) = 𝑃(𝑔(𝑋)) + 𝑐𝑑 + (1 − 𝑐)𝜇 − 𝛼
1 − 𝑐

𝜉
(1 −

𝑘−𝜉

1 − 𝜉
) (30) 

where 𝑃(𝑔(𝑋)) is calculated by Eq. (11).  

Using method of Lagrange multipliers, the Lagrange function can be defined as,  

Λ2(𝑐, 𝑑, 𝜆) = 𝐶𝑇𝐸𝑘(𝑇(𝑋))

+ 𝜆 {(1 + 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

] − 𝜋} 
(31) 

Take F. O. C. over 𝑐, 𝑑, 𝜆 respectively, and let the derivatives equal to 0.  

 𝑐 −
𝑐𝛼

1

𝜉(1 + 𝜃)(1 − 𝜉)(𝛼 + 𝑑𝜉 − 𝜇𝜉)
−
1

𝜉

1 − 𝜉
(1 + 𝜆) = 0 (32) 

𝑑 − 𝜇 +
𝛼

𝜉
(1 −

𝑘−𝜉

1 − 𝜉
) +

𝛼
1

𝜉(1 + 𝜃)(𝛼 + 𝑑𝜉 − 𝜇𝜉)
1−

1

𝜉

1 − 𝜉
(1 + 𝜆) = 0 (33) 

 (1 + 𝜃) ⋅ 𝑐 ⋅ [
𝛼 + 𝑑𝜉 − 𝜇𝜉

1 − 𝜉
(
𝛼 + 𝑑𝜉 − 𝜇𝜉

𝛼
)
−
1

𝜉

] − 𝜋 = 0 (34) 

Solving the equations,  

 𝑑∗ =
𝛼𝑘−𝜉 + 𝜇𝜉 − 𝛼

𝜉
 (35) 
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 𝑐∗ =
𝜋(1 − 𝜉)𝛼

−
1

𝜉

1 + 𝜃
(𝛼 + 𝑑∗𝜉 − 𝜇𝜉)

−1+
1

𝜉 
(36) 

From Eq. (34), it can be seen that the optimal deductible 𝑑∗ of the reinsurance 
contract does not depend on the premium limit, it only depend on the parameters of 

the loss distribution, and the confidence level 𝑘 of CTE measure. Figure 4 shows 

the relationship between the optimal deductible 𝑑∗ and the confidence level 𝑘, with 
the GPD parameters defined same as before.  

 

Figure 4: Relationship between 𝒅∗ and 𝒌 under CTE measure  

 
It can be seen from Figure 4 that the deductible decreases when the confidence 

level 𝑘 increases. When the insurance is more risk averse, say use 𝐶𝑇𝐸0.01 instead 

of 𝐶𝑇𝐸0.025, the amount of payments decreases to a large extent.  

Similar to the VaR case, the proportion parameter 𝑐∗ is linearly related to the 

pure premium limit, i.e. 𝜋/(1 + 𝜃) . To see the relationship between 𝑐∗  and 

confidence level 𝑘, substitute Eq. (35) into Eq. (36),  

 𝑐∗ =
𝜋(1 − 𝜉)𝛼

−
1

𝜉

1 + 𝜃
(𝛼𝑘−𝜉)

−1+
1

𝜉 = 𝑘−1+𝜉 ⋅
𝜋(1 − 𝜉)

𝛼(1 + 𝜃)
 (37) 

Figure 5 shows the relationship between the optimal proportion 𝑐∗ and the 

confidence level 𝑘. 
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Figure 5: Relationship between 𝒄∗ and 𝒌 under CTE measure  

 
Comparing Figure 4 and Figure 5, it can be seen that when the confidence level 

changes, the change rate of the proportion parameter 𝑐∗  isn’t that large as the 

deductible parameter 𝑑∗, which is similar to the case of VaR measure.  

Note that  the confidence level 𝑘 ∈ (0,1), thus 𝑘−𝜉 > 1, and  

 𝑑∗ =
𝛼𝑘−𝜉 + 𝜇𝜉 − 𝛼

𝜉
>
𝛼 + 𝜇𝜉 − 𝛼

𝜉
= 𝜇 > 0 (38) 

Therefore, the optimal deductible 𝑑∗  is always positive, indicating that the 
optimal reinsurance under CTE measure is always a change-loss reinsurance, 

indicating that CTE is a robust risk measure in this case.  

2.4. Comparison between VaR measure and CTE measure 

Comparing the optimal contract under VaR measure and under CTE measure, it 

can be seen that with other parameters fixed, larger deductible parameter 𝑑∗ means 

that the insurance company is more risk averse, while larger proportion parameter 

𝑐∗  means that the insurance company is less risk averse. To see the difference 

between the optimal reinsurance contracts under two tail risk measure, the optimal 

parameters 𝑐∗, 𝑑∗ under VaR measure and CTE measure are listed in Table 1 with 

the parameters set as 𝜃 = 0.2,  𝜋 = 2.5 × 109 , and GPD parameters 𝛼 = 5 ×
108 , 𝜇 = 1 × 108, 𝜉 = 0.98.  
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Table 1: Comparison between VaR Measure and CTE Measure  
 

𝑘 0.001 0.005 0.010 0.025 0.050 𝑘 

𝑑1 3.74 × 1010 6.53 × 109 2.93 × 109 8.52 × 108 1.90 × 108 0 

𝑐1 0.261 0.239 0.230 0.218 0.210 0.206 

𝑑2 3.72 × 1011 8.93 × 1010 4.14 × 1010 1.71 × 1010 8.64 × 109 8.10 × 109 

𝑐2 0.294 0.272 0.263 0.251 0.242 0.241 

 

where 𝑐1, 𝑑1 stands for the optimal parameters 𝑐∗, 𝑑∗ under VaR measure, and 

𝑐2, 𝑑2 stands for the optimal parameters 𝑐∗, 𝑑∗ under CTE measure.  

From Table 1, it can be seen that the deductible 𝑑 under CTE measure is much 

larger than that in VaR measure, while the proportion parameter 𝑐 is also larger 

under CTE measure. Therefore, the insurance company is much more risk averse 
under CTE measure, requiring the reinsurance company takes more responsibility 

under CTE measure. In addition, the optimal reinsurance contract under 𝑉𝑎𝑅 

measure changes from a quota share to stop-loss reinsurance after a specific 

confidence level, and remains unchanged ever since. While under CTE measure, the 
optimal reinsurance contract is always a change-loss reinsurance contract, indicating 

that CTE is a robust risk measure for optimal reinsurance design.  

3. Application 

3.1. Data 

China has been suffering catastrophes frequently in recent years, making the 

research on China’s catastrophe insurance and reinsurance market of great 

importance. In this section, we use the earthquake loss data in China’s Yunnan 
province as an example to find the optimal reinsurance contract. The loss data covers 

all the losses of earthquakes with magnitude above 4.0 occurred between 1978 and 

2008. The data are collected from China’s Earthquake Yearbook (1978-2008).  
The economic loss of the earthquakes is strongly related to the economic status 

of the year, making it inappropriate to use the data directly to fit the loss data with a 

specific loss distribution. To eliminate the effect of the economic development, we 

define the modification factor as below.  

 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 =
𝐺𝐷𝑃2016
𝐺𝐷𝑃𝑖

 (39) 

 

where 𝑖 = 1978,1979,…2008, 𝐺𝐷𝑃2014 is the GDP of year 2014, and 𝐺𝐷𝑃𝑖 
denotes the GDP of year 𝑖. Here we use 𝐺𝐷𝑃2014 because GDP of more recent 

years, like 2015, haven’t been released yet.  

The modification factor of year 2014 is set as 1, and 𝑓𝑎𝑐𝑡𝑜𝑟𝑖  is the 

modification factor of year 𝑖. By defining the modification factor, the losses in 

different years are all adjusted to the economic level of year 2014.  
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The factors for years 1978-2008 can be seen in Table 2.  
 

Table 2: Modification Factors 

Year Factor Year Factor Year Factor 

1978 185.45 1979 166.79 1980 152.01 

1981 136.14 1982 116.37 1983 106.73 

1984 91.81 1985 77.66 1986 70.30 

1987 55.95 1988 42.56 1989 35.30 

1990 28.35 1991 24.77 1992 20.71 

1993 16.36 1994 13.03 1995 10.48 

1996 8.44 1997 7.65 1998 7.00 

1999 6.75 2000 6.37 2001 5.99 

2002 5.54 2003 5.01 2004 4.16 

2005 3.69 2006 3.20 2007 2.69 

2008 2.25     

 

The modified economic loss can be derived by the direct economic loss 

multiplied by the modification factors, which is presented below:  

 𝐿𝑜𝑠𝑠𝑖 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝑖 × 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 (40) 

 

where 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝑖 and 𝐿𝑜𝑠𝑠𝑖 are the source data from the yearbooks and 

the modified data.  

The histogram of the logarithm of the modified loss data 𝐿𝑜𝑔(𝐿𝑜𝑠𝑠) is shown 

in Figure 6.  

Figure 6: Histogram of 𝑳𝒐𝒈(𝑳𝒐𝒔𝒔) 
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It can be seen from Fig. 6 that the losses are of heavy tail. The summary 
statistics of the losses are shown in Table 3.  

 

Table 3: Summary Statistics of Losses 

 Mean Std. Dev. Mean Minimum Maximum 

Loss 3.06 × 107 1.21 × 1010 4.83 × 108 7.65 × 107 8.72 × 1010 

 

The Coefficient of Variation (CV) of the losses can be derived as 3.95, 

indicating that the losses are of heavy tail. Using the Generalized Pareto Distribution 
(GPD) to fit the data, the parameters can be derived using Mean Excess Function 

(MEF) and Maximum Likelihood Estimation (MLE),  

 𝜇 = 8 × 107 ,   𝛼 ≈ 4.58 × 108 ,   𝜉 ≈ 0.98 (41) 

3.2. Optimal reinsurance contract design 

The variance of GPD exists iff 𝜉 <
1

2
, for earthquake insurance in Yunnan 

province, the variance doesn’t exist, making risk measures involving the variance 

not applicable. In this section, we try to find the optimal reinsurance contract under 
VaR and CTE.  

(1) VaR measure  

As is shown in Section 2.3, the optimal reinsurance contract has different forms 

for different confidence levels. The maximum confidence level 𝑘 that makes the 

optimal deductible 𝑑∗ positive can be derived by substituting the Eq. (41) into Eq. 

(27),  

 𝑘 ≈ 0.045 (42) 

For confidence levels 𝑘 < 𝑘 , the optimal deductible 𝑑∗  and optimal 

proportion 𝑐∗ can be derived by substituting Eq. (41) into Eq. (23) and Eq. (24), 

while for confidence levels 𝑘 > 𝑘, the optimal deductible 𝑑∗ is always 0, and the 

the optimal proportion 𝑐∗ is also fixed, and can be derived by substituting Eq. (41) 

into (29). Table 4 shows the optimal contract for some confidence levels under VaR 
measure.  

 

Table 4: Optimal Reinsurance Contract under VaR Measure 

𝑘 0.001 0.005 0.010 0.025 𝑘 0.050 

𝑑 5.78 × 109 1.11 × 109 4.95 × 108 1.16 × 107 0 0 

𝑐 0.482 0.453 0.441 0.426 0.417 0.417 

 

(2) CTE measure  
The optimal reinsurance contract under CTE measure can be derived by 

substituting Eq. (41) into Eq. (35) and Eq. (36). Table 5 shows the optimal contract 

for some confidence levels under VaR measure.  
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Table 5: Optimal Reinsurance Contract under CTE Measure 

𝑘 0.001 0.005 0.010 0.025 𝑘 0.050 

𝑑 4.04 × 1011 8.33 × 1010 4.21 × 1010 1.69 × 1010 9.40 × 109 8.40 × 109 

𝑐 0.484 0.468 0.461 0.452 0.447 0.446 

 
Comparing Table 4 and Table 5, it can be seen that for a specific confidence 

level 𝑘, the optimal contract under CTE measure not only has a larger dedutible, but 

also cedes a larger proportion of the losses, comparing to the optimal contract under 

VaR measure. Therefore, the insurance company is much more risk averse under the 
CTE measure.  

4. Conclusions 

Optimal reinsurance design is an important topic in insurance research, 

especially in catastrophe reinsurance. Comparing to conventional insurance, the 
catastrophe insurance are of severe tail risk due to the heavy tail characteristic of the 

catastrophe losses, making optimal reinsurance design problem of greate 

significance. In this paper, the optimal reinsurance contract for catastrophe insurance 
is designed under two tail risk measures, VaR and CTE, with the catastrophe 

insurance losses characterized by the Generalized Pareto Distribution (GPD) and the 

reinsurance premium calculated using the expected value premium principle. The 
results show that under VaR measure, the optimal reinsurance contract is 

change-loss reinsurance for small confidence level, and quota-share reinsurance for 

large confidence level. Under CTE measure, the optimal reinsurance contract is 

always change-loss reinsurance. Comparing to the optimal reinsurance contract 
under VaR measure, the optimal insurance contract under CTE measure has a much 

larger deductible and also a larger ceded proportion, indicating that the insurance 

company is much more risk averse under the CTE measure for the same confidence 
level. We also applied the approach to earthquake insurance market in China’s 

Yunnan Province, optimal reinsurance under both VaR measure and CTE measure 

are designed using the general reinsurance structure, change-loss reinsurance.  
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