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Abstract. One of the most important problems that a non-life actuary faces is 

constructing a fair pricing. In particular, claim counts modeling is one of the 
components of motor insurance ratemaking. This paper aims to describe the 

econometric modeling of the mean frequency of claims in a motor insurance 

portfolio using generalized linear models. The main frequency distributions of 

count data are presented together with the generalized linear models. Numerical 
illustration presents and compares the different proposed regression models, using 

annual CASCO insurance data from a Romanian insurance company. The main 

findings are that the Negative Binomial regression model performs better than the 
Poisson model and quantifies overdispersion. The figures, the estimations and the 

tests are done in the open source soft R. 
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1. Introduction 

 
One of the most important problems that a non-life actuary faces is 

constructing a fair pricing. In particular, claim counts modeling is one of the 

components of motor insurance ratemaking. 

Both in non-life insurance, and in life insurance, one comes across random 
variables that model situations such as the number of damage claims per motor 

insurance policy, or the number of insured people in a life insurance policy 

portfolio, and the possible applications are not limited to these situations. 
Estimating the mean frequency of claims in a motor insurance portfolio is one of 

the crucial components of its pricing, along with estimating the average damage 

severity. 
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This paper aims to describe the econometric modeling of the mean frequency 
of claims in a motor insurance portfolio using generalized linear models. The first 

to be presented are the main frequency distributions of count data, followed by the 

generalized linear models. We assumed that the explained variable is Poisson 
distributed, followed by mixed Poisson distributions, which reformulates the 

restrictive assumption that the mean is equal to the dispersion, allowing the 

modeling of the overdispersion phenomenon. 
Numerical illustration presented and compared the different proposed 

regression models using annual CASCO insurance data from a Romanian 

insurance company. The main findings are that the Negative Binomial regression 

model performs better than the Poisson model and quantifies overdispersion. The 
paper ends with conclusions that point out the possibility of new directions of 

research or approach in the estimation of annual number of claims reported to the 

insurer. 
The graphic representations, the estimates of the various regression models, as 

well as the tests of the different statistic hypotheses were done in R, using, among 

others, glm routines, and packages such as COUNT, msme, MASS. 

 

2. Distributions of counting random variables and generalized linear 

models 
 

The number of occurrences of a particular event on a specified time horizon or 

space can be modeled by a random variable, and let us denote it Y. The first choice 
for the distribution of Y is the Poisson distribution, Y~Poisson(λ), with the 

probability mass function: 
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This distribution is characterized by the equidispersion property: the expected 

value and variance are equal, that is    YVarYE  , and   YE . The maximum 

likelihood estimator of the parameter λ is the sample mean. It is an unbiased, 

consistent and efficient estimator. 
In practice, particularly in the field of non-life insurance, and in the case of 

those variables which indicate the number of damage claims, one can notice that 

the variance is bigger than the mean, a phenomenon called overdispersion, leading 

to the identification of other distributions capable to model or capture this aspect. 
A possible solution consists in resorting to mixed Poisson distributions. 

Thus, in line with the theories of De Jong and Heller (2008) and of Denuit, 

Marechal, Pitrebois and Walhin (2007), parameter λ of the Poisson distribution is 
considered to be a realization of a positive continuous random variable Λ, 
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Y~Poisson(Λ), so that the distribution of the variable Y, given Λ=λ, is 
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with ][E  and 2][ Var , then the probability mass function of the mixed 

distribution of Y is given, following De Jong and Heller (2008), by 
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    21][YVar . 

Next we shall use the parameterization Y ~ Negativ Binomial (μ, δ). 
One could take into account other mixed Poisson distributions: if one 

presupposes that Λ follows an Inverse Gaussian distribution, the result will be a 

Poisson-Inverse Gaussian distribution, or, if one presupposes that Λ follows a Log 
normal distribution, the result will be a Poisson-Log normal distribution. However, 

these have complex expressions of the probability mass function, or they are 

defined by recurrence relationships (Denuit, Marechal, Pitrebois and Walhin 

(2007)). Recent developments of statistical software make possible the estimation 
of the parameters of such mixed distributions. 

Generalized linear models (GLMs) expand the classical regression model due 

to the fact that the theoretical distribution of the dependent variable is not 
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necessarily normal, but it belongs to a special class of distributions, while the 

relationship between the mean of the dependent variable and a linear function of 
explanatory variables is given by a link function. GLMs were introduced in the 

seminal paper of Nelder and Wedderburn (1972). 

A generalized linear model (GLM) consists of three elements, as explained by 
McCullagh and Nelder (1989), Denuit and Charpentier (2005), and Frees, Derrig 

and Meyers (2014). 

The first element is represented by the random component of the model, that is, 

by the independent random variables nYYY ,...,, 21 , their distribution is in the 

exponential family, i  are the canonical parameters and the common parameter   

is the scale or dispersion parameter: 

 
 

 
Syeyf i

yc
by

ii

i
iii






,,;
,





 ,    (3) 

where  b  and  ,c  are known functions, the support set NS or R, 

while i , an open set in R. The expected value 
i  and the variance of Yi are 

   iii bYM  ' ,    iiiYVar  ' , so the dispersion varies with the mean. 

The second element is represented by the systematic component of the model, 

built from p+1 parameters 
t

p ),...,,( 10    and with p explanatory variables. 

The linear predictor is 

nixxx pipiii ,...,2,1,...22110   .  (4) 

The design matrix t
n ),...,,( 21 xxxX  , of size )1(  pn , has full rank np 1 , 

so that the square matrix XX
t  is non-singular. 

The third element is represented by a link function g between the random and 

the systematic components, that is monotone and differentiable, so that 

  ippiiii xxxg   ...22110 ,   (5) 

The estimation of the parameters p ,...,, 10  is done by the maximum 

likelihood method. That leads to solving a non-linear system of equations that can 
only be solved through numerical methods, such as Newton-Raphson. 

The Poisson distribution and the Negative Binomial distribution belong to the 

exponential family of distributions. The Poisson regression model is a GLM with 

the response variable  PoissonY ~ , 0 ,    
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Ny , in the case of which the relationship between the canonic parameter θ and 

the parameter   of the Poisson distribution is given by  ln , the dispersion 

parameter 1  and    YVarYE   . If the selection variables 

 ii PoissonY ~ , i=1,2,…,n, then the linear predictor is given by the relationship 

(4), while the link function is one of log type,   iii g  ln , and thus the mean 

frequency will be estimated or adjusted by the model 
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also referred to as the multiplicative model. 
The Negative Binomial regression model is a GLM with the response variable 

Y~ Negativ Binomial (μ, δ), μ>0, δ>0, 
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variables   ,~ ii NegativBinomialY , i=1,2,…,n, then the linear predictor is 

given by the relationship (4) in the definition of the GLMs, while the link function 

is conveniently chosen as one of the log type,   iii g  ln , and thus the mean 

frequency will be fitted also by a multiplicative model such as (6), that allows for 

an easy interpretation of the coefficients. 
Although the two regression models have the same form, the estimators of the 

parameters do not coincide, as they represent solutions of different systems of 

equations that are built with the aid of the likelihood functions. Moreover, for the 

Negative Binomial regression model, an additional parameter,  , is estimated. The 

introduction of this parameter ensures a bigger flexibility in the adjustment of data 
by the Negative Binomial regression as compared to the Poisson model, helping in 

the modeling of the overdispersion phenomenon. 

The dispersion parameter of a generalized linear model is estimated by 
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  are the Pearson residuals of 

a Poisson regression model and a Negative Binomial regression model, 

respectively. 

Practically speaking, in order to estimate the Poisson or Negative Binomial 
regression models, De Jong and Heller (2008) recommend that the explanatory 

variables included in a GLM should be dummy covariates. These are obtained 

either from non-numeric variables, or from numeric variables. Thus, each response 
category of a non-numeric variable or each class of variation for a numeric variable 

is assigned a dichotomous variable. Moreover, for each variable, we retain the 

category with the biggest exposure in the sample, and the corresponding dummy 
variables are not included in the GLM as explanatory variables, but they define the 
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baseline profile of an elementary unit in the sample. The estimate of the mean 

frequency for the baseline profile is achieved with the aid of the intercept 
parameter. 

Next we present a review of the main results in the specialized literature of the 

applications in the actuarial area of the quantitative methods, of the generalized 
linear models and, particularly, of the regression models used to estimate the mean 

frequency of the occurrence of a specific event. 

The characteristic of the count data coming from the motor insurance area is 
the excess of zeros. This aspect may be explained by the reserve of policy owners 

to report a claim that they consider minor, or insignificant, for fear their damage 

claim history might influence their premiums in the future. Despite this, such a 

situation leads to the fact that data do not exhibit equidispersion, specific to 
Poisson distributions, but overdispersion. Mullahy (1986) introduced the zero-

inflated models and since then a lot of studies have focused on this issue and have 

highlighted the importance of zero inflation in actuarial studies, for instance: Yip 
and Yau (2005), Boucher, Denuit and Guillen (2007), Perumean-Chaney, Morgan 

et al. (2013), Wolny-Dominiak (2013), Sarul and Sahin (2015), and also, in other 

fields, such as psychology, we mention Coxe, West and Aiken (2009). 

In Covrig, Mircea et al. (2015), detailed explanations on estimating or fitting 

GLMs using R are provided. Quantitative methods applied in actuarial science are 

developed in Tănăsescu and Mircea (2014), where the authors analyze the difficult 
topic of ruin probability for an insurance company from a quantitative method 

perspective. 

Generalizations of the Negative Binomial regression model are given in 

Vangala, Lord and Geedipally (2015) or Shirazi, Lordet et al. (2016). More 
advanced and recent research has focused on longitudinal and panel data, such as 

Boucher and Inoussa (2014), or on some complex mixed models, such as Poisson 

Inverse Gaussian GLMs or Bayesian models that allow for the modeling of highly 
overdispersed data: Zha, Lord and Zou (2016), Klein, Denuit et al. (2014), or 

Gómez-Déniz, Ghitany and Gupta (2016). 

 

3. Using GLMs on count data of a Romanian motor insurance portfolio 
 

We illustrate the regression models presented in the previous section through 

the estimation of the mean frequency of claims per motor insurance policy using a 
sample of CASCO policies provided by a Romanian insurance company. The 

motor insurance policies included in the sample cannot produce other events as 

their validity period is closed and they are prior to 2014. 
The sample represents a CASCO motor insurance policy selection, valid for 1 

year, in the portfolio of a Romanian insurance company. In addition to the variable 

which indicates the number of claims, we took into account other variables, some 

of which characterize the policy owner - such as age, in years, or the number of 
renewals - while others characterize the insured automobile, such as: the brand; 
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cylindrical capacity, expressed in cm3; the engine power, expressed in kw; the 

vehicle age, in years; the insured amount, in EUR, or the county where the 

insurance policy was issued, most commonly corresponding to the area where the 
vehicle is used. 

Table 1 includes the initial variables, except the automobile brand, their 

transformation in categorical variables, with the corresponding coding, as well as 
the reference categories, marked in bold letters. We name reference category the 

category with the highest exposure in the sample. Romanian development regions, 

numbered from 1 to 8, are defined at http://www.mdrap.ro/dezvoltare-regionala/-
2257/programul-operational-regional-2007-2013/-2975. The most frequently 

CASCO insured automobile brand in the sample is Volkswagen. 

The baseline profile of a CASCO insurance policy in this sample was the 

following: a legal entity (LE) purchased the insured vehicle and the policy was 
issued for the first time, the vehicle had a cylinder capacity under 1400 cm3 and an 

age between 3 and 6, the insured amount is in the interval 5001 and 10000 EUR, 

the brand is Volkswagen, and the automobile is driven in the region Bucharest-
Ilfov. 

Table 1.Characteristics of a CASCO insurance policy in the sample 

Initial variables Categorical variables 

Owner’s age, in years Cat_age 

 1 18-30  

 2 31-40  

 3 41-55  

 4 over 56 

 5 LE 

Cylinder capacity, in cm3 Cat_cil_cap 

 1 under 1400 cm
3
 

 2 1401-1800 cm3 

 3 1801-2200 cm3 

 4 2201-3000 cm3 

 5 over 3001 cm3 

Automobile age, in years Cat_auto_age 

 1 0-2 

 2 3-6 

 3 7-10 

 4 over 11 

Insured amount, in Eur Cat_insured_amount 

 1 under 5000 Eur 

 2 5001-10000 Eur 

 3 10001-30000 Eur 

 4 over 30001 Eur 

http://www.mdrap.ro/dezvoltare-regionala/-2257/programul-operational-regional-2007-2013/-2975
http://www.mdrap.ro/dezvoltare-regionala/-2257/programul-operational-regional-2007-2013/-2975
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Romanian development region Region 

 1 North-East 

 2 South-East 

 3 South Muntenia 

 4 South-West Oltenia 

 5 West 

 6 North-West 

 7 Center 

 8 Bucharest-Ilfov 

Number of policy renewals Cat_nb_renew 

 0 0 

 1 1 

 2 2 

 3 3 

 4 4, 5, 6, 7 

 

The sample relative frequency distribution of the variable that indicates the 
number of claims per policy is presented in Table 2. 

 

Table 2. The sample relative frequency distribution 

of the number of claims per policy 

Number of claims per policy Proportion 

0 0.7525 

1 0.1443 

2 0.0604 

3 0.0368 

4 0.0047 

5 0.0010 

6 0.0004 

Total 1 

 

The sample mean frequency is calculated as a weighted mean of the number of 

claims per policy, k

k

pk



6

0

̂ , where kp is the proportion of policies with k 

claims in the sample. The obtained result is 4015.0ˆ  , that is an annual 

observed mean frequency of 40.15% per policy. 

We considered it suggestive to represent the dependence of the observed mean 

frequency of claims on each possible explanatory variable for which there is 

available information, with a purpose of introducing them in the regression models, 
as can be seen in Figure 1. Thus Figure 1 (a) shows that the data in the sample 
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confirms the fact that the mean frequency of claims is inversely proportional with 

the owner’s age, decreasing from 57% in the case of the young drivers, to 

approximately 30% in the case of the elder. A possible explanation is the fact that 
aging is associated with more experience, as well as with a decreasing usage of the 

automobile. The cylindrical capacity influences the mean frequency of claims 

directly, the evolution being a spectacular one, as we can see in Figure 1 (b). As 
regards the automobile age, in the case of new vehicles, the observed mean 

frequency of claims is very close to the sample mean, and it is followed by a 

descending trend, from a value above average, of 47%, to approximately 29%, for 
the category of the oldest cars, Figure 1 (c). Figure1 (f) emphasizes the decreasing 

tendency of the mean number of claims with the number of renewals, so that, if, in 

the case of a policy with under 3 renewals the mean frequency varies a little around 

the average value of 40.15%, starting with 4 renewals the average frequency drops 
under the average value, to a minimum of 5% in the case of 7 renewals. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 1.Observed mean frequency of claims per policy on: (a) age, (b) cylinder capacity, 

(c) automobile age, (d) insured amount, (e) region, and (f) number of renewals 
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Figure 2. Observed average claim frequency, varying with the brand of the 

insured automobile. 

 

We notice that the observed mean claim frequency of German automobile 
brands, such as Audi, BMW, Mercedes-Benz or Volkswagen, is above the sample 

average value of 40.15%. 

A first approach in the estimation of the mean number of claims per policy 
would be to presuppose that Y, the variable describing the number of damage 

claims, follows a Poisson distribution. The estimation of the corresponding Poisson 

regression model was done in R with the glm routine, specifying the response 

variable, the reference levels of the categorical covariates, the type of distribution 

and the link function. Among the seven considered explanatory variables, only the 

insured amount was not statistically significant. 

Table 3 illustrates the results of using the drop1 function, corresponding to 

the application of some likelihood ratio tests, which help us compare, in turn, the 

all variable model to each of the models in which one variable was eliminated at a 
time. If the calculated significance level (p-value) is under 0.05, then that particular 

variable may be kept in the model. 

 

Table 3.Statistical significance tests of the explanatory variables in the Poisson 

regression model 

 Df Deviance AIC LRT Pr(>Chi) 

Full model  14471 21749   

(Cat_age,"5") 4 14556 21826 84.908 <2.2·10-16*** 

(Cat_brand,"VW") 19 14612 21852 141.377 <2.2·10-16*** 
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(Cat_cil_cap,"1") 4 14544 21814 73.540 4.056·10-15*** 

(Cat_auto_age, "2") 3 14586 21858 115.316 <2.2·10-16*** 

(Region,"8") 7 14513 21777 42.296 4.561·10-7*** 

(Cat_nb_renew,"0") 4 14528 21798 57.686 8.880·10-12*** 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

An improved version of the estimation of a Poisson regression model would be 

to consider the robust standard errors with probabilistic properties superior to those 
standard errors in a regular Poisson regression model. Consequently, Table 4 

below presents the output of such a situation. 

 

Table 4. The estimated Poisson regression model with robust standard errors 

Variables 
j̂  Robust SE Z Pr(>|z|) 

(Intercept) -0.8487 0.0780 -10.8808 0.0000 

(Cat_age,"5")1 0.2639 0.0769 3.4317 0.0006 

(Cat_age,"5")2 0.0698 0.0486 1.4362 0.1509 

(Cat_age,"5")3 -0.1739 0.0498 -3.4920 0.0005 

(Cat_age,"5")4 -0.2380 0.0638 -3.7304 0.0002 

(Cat_brand,"VW") Other -0.0841 0.0762 -1.1037 0.2697 

(Cat_brand,"VW")AUDI 0.2335 0.0746 3.1300 0.0018 

(Cat_brand,"VW")BMW 0.4880 0.1158 4.2142 0.0000 

(Cat_brand,"VW")CHEVROLET -0.0416 0.1525 -0.2728 0.7851 

(Cat_brand,"VW")CITROEN -0.2197 0.1495 -1.4696 0.1418 

(Cat_brand,"VW")DACIA -0.2939 0.0880 -3.3398 0.0008 

(Cat_brand,"VW")FIAT -0.1896 0.1500 -1.2640 0.2063 

(Cat_brand,"VW")FORD -0.0621 0.0851 -0.7297 0.4657 

(Cat_brand,"VW")HONDA -0.4301 0.1815 -2.3697 0.0178 

(Cat_brand,"VW")HYUNDAI -0.3468 0.1340 -2.5881 0.0096 

(Cat_brand,"VW")MERCEDES-BENZ 0.1837 0.0927 1.9817 0.0476 

(Cat_brand,"VW")MITSUBISHI -0.1360 0.1510 -0.9007 0.3680 

(Cat_brand,"VW")NISSAN -0.4860 0.1628 -2.9853 0.0028 

(Cat_brand,"VW")OPEL -0.0753 0.0906 -0.8311 0.4059 

(Cat_brand,"VW")PEUGEOT -0.0635 0.1087 -0.5842 0.5592 

(Cat_brand,"VW")RENAULT -0.0823 0.0871 -0.9449 0.3449 

(Cat_brand,"VW")SKODA -0.2171 0.0871 -2.4925 0.0127 

(Cat_brand,"VW")TOYOTA 0.0111 0.0960 0.1156 0.9078 

(Cat_brand,"VW")VOLVO -0.0690 0.1323 -0.5215 0.6017 

(Cat_cil_cap,"1")2 0.1529 0.0513 2.9805 0.0029 

(Cat_cil_cap,"1")3 0.2952 0.0556 5.3094 0.0000 

(Cat_cil_cap,"1")4 0.2746 0.0718 3.8245 0.0001 

(Cat_cil_cap,"1")5 0.7063 0.1252 5.6414 0.0000 

(Cat_auto_age,"2")1 -0.1217 0.0613 -1.9853 0.0471 

(Cat_auto_age,"2")3 -0.3311 0.0408 -8.1152 0.0000 

(Cat_auto_age,"2")4 -0.4350 0.2007 -2.1674 0.0302 

(Region,"8")1 0.2055 0.0543 3.7845 0.0002 

(Region,"8")2 0.0982 0.0712 1.3792 0.1678 

(Region,"8")3 0.1187 0.0598 1.9849 0.0474 

(Region,"8")4 0.1860 0.1277 1.4565 0.1453 
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(Region,"8")5 -0.1631 0.0902 -1.8082 0.0705 

(Region,"8")6 -0.0547 0.0682 -0.8021 0.4225 

(Region,"8")7 0.0529 0.0816 0.6483 0.5168 

(Cat_nb_renew,"0")1 -0.0998 0.0482 -2.0705 0.0384 

(Cat_nb_renew,"0")2 -0.0165 0.0588 -0.2806 0.7792 

(Cat_nb_renew,"0")3 0.0298 0.0714 0.4174 0.6760 

(Cat_nb_renew,"0")4 -0.3932 0.0753 -5.2218 0.0000 

 

As the sample variance of variable Y is 2
ys 0.6699 0.4015 y ̂ , we 

intend to investigate if the data exhibits overdispersion. First we calculate the sum 

of the squared Poisson residuals, namely the Pearson statistic χ2=20042.0631, and 

then we estimate the dispersion parameter, ̂ 1.6120, for which we obtain a value 

greater than 1. A Poisson regression model is correctly specified if the estimate ̂  

is very close to 1. 

Identifying the presence of overdispersion presupposes to test the null 
hypothesis that the data does not exhibit overdispersion. This can be done with two 

tests suggested in Hilbe (2014) and in Cameron and Trivedi (2013). Applying these 

tests leads to a calculated level of significance of 2·10-16, therefore the data in the 
sample support the alternative hypothesis. 

Further we assume that the distribution of Y is Negative Binomial and we 

estimate the corresponding regression model, using the glm.nb function in the 

MASSpackage, or the nbinomial function in the COUNT package. The results 

presented in the table below show that the same explanatory variables are 

statistically significant, just as in the Poisson model. 
 

Table 5.Statistical significance tests of the explanatory variables in the 

Negative Binomial model 

 Df Deviance AIC LRT Pr(>Chi) 

Full model  8462.3 20371   

(Cat_age,"5") 4 8512.0 20412 49.676 4.219·10-10*** 

(Cat_brand,"VW") 19 8541.9 20412 79.571 2.204·10-9*** 

(Cat_cil_cap,"1") 4 8502.1 20402 39.853 4.642·10-8*** 

(Cat_auto_age, "2") 3 8529.7 20432 67.445 1.504·10-14*** 

(Region,"8") 7 8485.7 20380 23.433 0.001433** 

(Cat_nb_renew,"0") 4 8495.9 20396 33.643 8.821·10-7*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The comparison of the Poisson and Negative Binomial regression models can 

be performed applying a likelihood ratio test with the null hypothesis that the 

Poisson model better adjusts data with respect to the Negative Binomial model. 
The calculated level of significance is 1.209·10-301, so we prefer the Negative 

Binomial model. Table 6 presents the output of the estimated Negative Binomial 

regression model. 
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Table 6. The estimated Negative Binomial regression model 

Variables j̂  SE Z p-value 

(Intercept) -0.8315 0.0819 -10.1509 3.28E-24 

(Cat_age,"5")1 0.2672 0.0875 3.0519 0.0023 

(Cat_age,"5")2 0.0649 0.0516 1.2575 0.209 

(Cat_age,"5")3 -0.1704 0.0522 -3.2633 0.0011 

(Cat_age,"5")4 -0.2547 0.0620 -4.1111 3.94E-05 

(Cat_brand,"VW") Other -0.0891 0.0819 -1.0879 0.277 

(Cat_brand,"VW") AUDI 0.2518 0.0839 3.0012 0.0027 

(Cat_brand,"VW") BMW 0.5223 0.1371 3.8112 0.0001 

(Cat_brand,"VW") CHEVROLET -0.0580 0.1489 -0.3897 0.697 

(Cat_brand,"VW") CITROEN -0.2243 0.1528 -1.4673 0.142 

(Cat_brand,"VW") DACIA -0.3071 0.0935 -3.2824 0.0010 

(Cat_brand,"VW") FIAT -0.2074 0.1439 -1.4413 0.149 

(Cat_brand,"VW") FORD -0.0668 0.0925 -0.7227 0.47 

(Cat_brand,"VW") HONDA -0.4497 0.1643 -2.7365 0.0062 

(Cat_brand,"VW") HYUNDAI -0.3397 0.1334 -2.546 0.0109 

(Cat_brand,"VW") MERCEDES-BENZ 0.1768 0.1057 1.6731 0.0943 

(Cat_brand,"VW") MITSUBISHI -0.1503 0.1516 -0.9909 0.322 

(Cat_brand,"VW") NISSAN -0.4649 0.1672 -2.7813 0.0054 

(Cat_brand,"VW") OPEL -0.0974 0.0951 -1.0241 0.306 

(Cat_brand,"VW") PEUGEOT -0.0766 0.1107 -0.6916 0.489 

(Cat_brand,"VW") RENAULT -0.0995 0.0932 -1.0672 0.286 

(Cat_brand,"VW") SKODA -0.2176 0.0878 -2.478 0.0132 

(Cat_brand,"VW") TOYOTA 0.0018 0.0992 0.0184 0.985 

(Cat_brand,"VW") VOLVO -0.0681 0.1370 -0.4974 0.619 

(Cat_cil_cap,"1")2 0.1535 0.0534 2.8774 0.00401 

(Cat_cil_cap,"1")3 0.2928 0.0577 5.0749 3.88E-07 

(Cat_cil_cap,"1")4 0.2527 0.0787 3.2106 0.0013 

(Cat_cil_cap,"1")5 0.7141 0.1443 4.9477 7.51E-07 

(Cat_auto_age,"2")1 -0.1109 0.0669 -1.6578 0.0973 

(Cat_auto_age,"2")3 -0.3378 0.0417 -8.1054 5.26E-16 

(Cat_auto_age,"2")4 -0.3927 0.2128 -1.8452 0.065 

(Region,"8")1 0.1971 0.0587 3.3567 0.0008 

(Region,"8")2 0.0969 0.0754 1.2841 0.199 

(Region,"8")3 0.0942 0.0627 1.5013 0.133 

(Region,"8")4 0.1605 0.1403 1.1444 0.252 

(Region,"8")5 -0.1797 0.0942 -1.9079 0.0564 

(Region,"8")6 -0.0785 0.0684 -1.1471 0.251 

(Region,"8")7 0.0462 0.0846 0.5458 0.585 

(Cat_nb_renew,"0")1 -0.0927 0.0505 -1.8352 0.0665 

(Cat_nb_renew,"0")2 -0.0141 0.0621 -0.2275 0.82 

(Cat_nb_renew,"0")3 0.0213 0.0767 0.2777 0.781 

(Cat_nb_renew,"0")4 -0.3918 0.0716 -5.4721 4.45E-08 
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For this regression model, the Pearson statistics is χ2=11927.85, and the 

estimate of the dispersion parameter is ̂ 0.9594, a value very close to 1. The R 

functions that provide the parameters estimates 
j̂  for the Negative Binomial 

regression model also return information about the parameter   of the distribution, 

giving the estimate of  , where 



1

 . In our case, ̂ 0.5532, and then 





ˆ

1ˆ 1.8075. 

For the observed data on the number of claims per policy iy , respectively for 

the fitted values i̂  in the regression model, we calculated the mean and the 

variance. Thus,  iymean =0.4015,  i̂mean =0.4019,  iyvariance =0.6699, 

      2ˆmeanˆˆmeanˆvariance iii   =0.6940, and we could notice that the 

variances are very close, so the Negative Binomial regression model successfully 

quantified overdispersion. 
By applying the goodness of fit tests, namely Deviance Goodness of fit test and 

Pearson Goodness of fit test, in which the null hypothesis is that the response 

variable Y follows a Negative Binomial distribution, we obtained the calculated 
levels of significance (p-value) 1, and 0.9994 respectively, so that we cannot reject 

the null hypothesis. 

 

4. Conclusions 
 

The main results of this research paper are the identification and correction of 

overdispersion, starting from the data in the CASCO motor insurance policy 
sample, provided by a Romanian insurance company. 

The detection of overdispersion was achieved through the successful 

application of the tests suggested by Hilbe (2014) and by Cameron and Trivedi 
(2013). The correction was done through the identification of a Negative Binomial 

regression model, the goodness of fit tests indicating that this model better adjusted 

the data. Thus, this model offered better predictions of the average number of 

claims per CASCO insurance policy than the Poisson regression model. The 
variables with significant influence on the mean frequency were: the age of the 

insurance policy owner, the automobile brand, its cylinder capacity, the vehicle 

age, the region where the policy was issued and its number of renewals. The 
insured amount of the vehicle was not statistically significant in any of the 

estimated regression models. 

As far as we know, this paper is the first research study conducted on claim 

counts modeling done on the basis of data from a Romanian insurance company, so 
at the same time it represents a useful instrument for insurance providers. 
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Another important aspect that needs to be mentioned is the exclusive use of the 

open source R software in our processing of the data in order to obtain the 

graphical displays, as well as the estimates, and to perform statistical hypotheses 

tests referring to goodness of fit tests or likelihood ratio tests. 
Regarding the limits of our research, we need to mention that these were 

independent from us, and perhaps a bigger sample is needed for more generalizable 

results, one to include more profiles of insurance policy owners, as well as more 
detailed information about the owners and about the insured vehicles. 

Regarding the possible directions in which we could continue our research, we 

aim to carry on our estimations with other types of regression models, such as 
Poisson-Gaussian Inverse regression model or Zero-Inflated regression model, as 

well as to compare these models to the models fitted in this paper. 
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