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ABSTRACT 

An interesting variant, from the point of view of the factor analysis in the economy, is 
represented by the Crossed Spectral Analysis. The simultaneous analysis of the oscillation of different 
frequencies for two or several data series can be regarded as an analytical approach, by constituent 
elements, of the correlation between two or several phenomena evolving in parallel in time. The 
objective of the present study consists in the analysis of the interdependency relations between 
Romania’s agri-food exports and imports focusing on the relation intensity in the synchronous but 
mainly in asynchronous optics (phase lag) for the different frequency components.  
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1. INTRODUCTION 

The problem of spectral analysis of time series is obviously of large interest 
to many applied scientists who utilize spectral analysis in their scientific research. 
The initial appearance of spectral analysis in the study of macroeconomics time 
series dates from the middle 1960s, encouraged by the necessity of a more insightful 
knowledge of the series structure and sustained by the contemporaneous progress 
in spectral estimation and computation. The first works centered on the problem of 
seasonal adjustment procedures and on the general spectral structure of economic 
data. Cross spectral methods were pointed out from the outset as being significant 
in determining and interpreting the relationship between economic variables.  

After the early years, the range of application of such analysis was enlarged 
to the study of other econometric subjects, among which the controversial trend-
cycle separation, the related problem of business cycles extraction and the analysis 
of co-movements among series, helpful in the study of international business 
cycles. By the mid 1970s time-domain time-series methods came into vogue, due 
to the appearance of the important book by Box Jenkins (1970). By using the time 
domain methodology and adjusting it to the computer, these authors and others 
have evolved a useful and flexible methodology for carrying out such important 
functions as prediction (or forecasting). Nold (1972) produced a bibliography of 
applications of spectral methods in economics covering much of the most active 
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period, recording 101 papers by 68 diverse authors, although some of the references 
given are only marginally relevant. 

Lately, spectral techniques have largely been out of favor by applied econo-
metricians even if they are still used as one of the bundle of empirical techniques 
available for analysis of time series data. The theoretical aspects of the frequency-
domain representations remain important when properties of these diverse methods 
are considered.  

2. THE TIME SERIES MODEL: A BRIEF REVIEW 

The model we cover here describes phenomena for which the generating 
mechanism can be considered, at least for relatively long stretches of time, to be 
unchanging with the passage of time. The model itself has this unchanging or 
stationarity property beginning with the infinite past and extending into the infinite 
future. If X(t) represents a numerical characteristic measured at time t, in the model 
X(t) is viewed as a random variable foe all times – ∞<<∞ t , along with their 
joint probability distributions, is a stochastic process. By imposing the physical 
conception of unchanging or stationarity on the probability distributions of the 
stochastic process, this model becomes stationary stochastic process. The spectral 
theory involves only the first two moments, the mean and the covariance, of the 
model. Consequently, it is really only necessary to impose the stationarity conditions 
on these moments. When this is done, the stochastic process is called weakly (or 
second-order) stationary.  

The stationarity assumption implies that the process means EX(t), (where  
E denotes the expectation operator), are unchanging in time; EX(t)≡tm. Only the 
behavior of the residuals of the process from this constant mean value is theoretical 
interest. We can shift to the residuals without changing notation simply by 
assuming m=0. This will be taken as the value of the mean hereafter. The only 
process parameter of interest is then the covariance function R(t1,t2) = EX(t1)X(t2) 
which describes the stochastic relationship between measured values of the 
physical phenomena at pairs of time points t1 and t2.  

The condition of stationarity implies that the physical phenomenon has no 
relevant origin. That is, for all t, t1and t2, 

),(),( 2121 ttttRttR ++=  
This being true, by taking t=-t1, we see that R(t1,t2)=R(0, t2-t1). That is, the 

covariance depends on t1 and t2 only through the time difference t2-t1. The covariance 
is then completely characterized by the function 

∞<<∞−= τττ ),,0()( RC , 
called the autocovariance function of the process. 
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The implication of accepting this model for the physical process under study 
is that all of the interesting and relevant information about the process is then 
contained in the values of C(τ). One such value is C(0)=EX2(t), the process 
variance. The variance represents the average “energy” or power of the process. It 
has the physical interpretation of a time average of energy because of the property 
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Without the factor of 1/2T in the last displayed expression, power resembles 
a sum of squares similar to the usual measure of variability seen in the ‘analysis of 
variance’. The representation of the response vector makes it possible to decompose 
the total sum of squares into a sum of component sums of squares, each of them 
representing the contribution of a different factor in the model.  

Spectral analysis performs precisely this same operation on time series. In the 
time series context, the orthogonal vectors of the decomposition are the cosine 
functions  

,)),(cos()( ∞<<∞−+ ttA λθλλ  
where, for given frequency λ ( in radians per unit time), A(λ) represents the 
amplitude and θ(λ) the phase of the cosine function. The functions are viewed as 
being indexed by λ and functions with different values of this index are orthogonal. 
The fact that these same functions crop up in so many different mathematical 
contexts is what makes Fourier analysis such a rich field of study. Their appearance 
in the context of weakly stationary stochastic processes provides the mathematical 
foundation for the spectral analysis of time series.  

3. SPECTRAL PARAMETERS FOR BIVARIATE TIME SERIES 

Two weakly stationary process X(t) and Y(t) are said to be stationarily 
correlated if the covariance RXY(t1,t2) =EX(t1)Y(t2) depends only on t1-t2. The cross 
covariance function CXY(ּד) is then defined to be : 

( ) ( ) ( ).XYC EX t Y tτ τ= +  
A pair of stationarily correlated weakly stationary process constitutes a 

bivariate weakly stationary process. The cross-covariance function is the new time-
domain parameter which, along with the autocovariance functions CX(ּד), completely 
describes the relevant properties of the bivariate process. 

The corresponding spectral parameter FXY(dּד), called the cross-spectral 
distribution or, more simply, the cross spectrum, satisfies the relation:  

( ) ( ).i
XY XYC e F dλττ λ= ∫  
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The cross spectrum has discrete and continuous components pXY(λ) and 
fXY(λ), called the cross-spectral function and cross-spectral density, for which:  

FXY(dλ)= pXY(λ)+ fXY(λ)dλ. 
These functions will be non zero only where the corresponding spectral 

functions or spectral densities are nonzero for both component processes.  
The input and output of a linear filter will always be stationarily correlated. 

Consequently, we can compute the cross spectrum of such series. It is convenient 
to use the fact that FXY(dλ) is the (complex) covariance of ZX (dλ) and ZY(dλ): 

( ) ( ) ( ).XY X YF d EZ d Z dλ λ λ=  
If Y(t)=L(X(t)) and L has transfer function D(λ), then:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )XY X Y X X XF d EZ d Z d D EZ d Z d D F dλ λ λ λ λ λ λ λ= = =  
Thus the transfer function, complete with both gain and phase information, 

can be computed as: 
( )( )
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This is only one possible use of the cross spectrum. In general, the cross 
spectrum contains information about the interrelationship between the components 
of a bivariate time series in much the same way that a covariance measures the 
linear relationship between two random variables. In fact, this analogy is much 
closer than one might imagine. In each frequency dimension , the cross spectrum 
is essentially the covariance of the two 'random variables' ZX (dλ) and ZY(dλ). The 
chief difference is that these variables are complex valued, which makes the 
covariance complex-valued as well. 

Two different real-valued representations of the cross spectrum are in 
common use, each depending on a particular expression for complex numbers. The 
cross spectrum is determined by the cross-spectral density fXY(λ). Representing 
fXY(λ) in Cartesian form (with a negative sign) leads to the equation: 

( ) ( ) ( ),XYf c iqλ λ λ= −  
where c(λ) and q(λ) are the cospectral density and quadrature spectral density, 
respectively. Thus one complete list of real-valued spectral parameters for the 
bivariate process would be c(λ), q(λ), fx(λ) and fy(λ). 

A second set of parameters is obtained from applying the polar representation 
z = reiθ to fXY(λ), where r = IzI and θ = arg z. Here, we let  
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These parameters are called the coherence and phase, respectively. Along 
with fX(λ) anf fY(λ) they represent an alternate real-valued parameterization of the 
bivariate process.  
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Writing ZX(dλ) and ZY(dλ) in polar form, we have 
))()((()()()()( λθλθλλλλλ YXi

YXYXXY edZdZEdZdEZf −==  

If the phases θX(λ) and θY(λ) were constant, the exponential would factor out 
of the expectation giving 

)()()( λθλθλψ YX −=  
In this case, ψ(λ) would represent the phase lead of the X(t) time series over 

that of the Y(t) series at frequency.  
The coherence behaves almost exactly like the absolute value of a correlation 

coefficient. For example, 0≤p(λ)≤1, with values near 0 indicating a weak linear 
relationship at frequency λ and values near 1 a strong relationship. In the time 
series context, ‘linear’ refers to linear filters. That is, p(λ) measures the degree to 
which Y(t) can be represented as the output of a linear filter with input X(t). In fact, 
p 2(λ) has precisely the interpretation of the coefficient of determination. It is the 
proportion of the variation ( power) of Y(t) at λ that is attributable to its linear 

relationship with X(t) in the following sense: If 
∧

L is the linear filter that minimizes 
the power, E(Y(t)-L(X(t)))2 in the ‘residual process’ among all filters L, then p 2(λ) 
is the ratio of the spectral density  
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The process )(tY
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represents the best approximation to Y(t) at frequency λ 

attributable to ).(tY
∧

 Thus, for example, if Y(t) is exactly a linear function of X(t), 
Y(t)=L(X(t)), and if D(λ) is the transfer function of L, then we see from earlier 
calculations that  
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Another important property of the absolute value of a correlation coefficient 
is its invariance under linear transformation. This property also holds for coherence. 
Thus, if X(t) and Y(t) have coherence function p(λ) and if U(t)=L1(X(t)) and 
V(t)=L2(Y(t)), where L1 and L2 are arbitrary linear filters, then p(λ) will also be the 
coherence of U(t) and V(t) at all frequencies for which the spectral densities fU(λ) 
and fV(λ) are both positive. These properties make it possible to translate one’s 
intuition about correlation and simple linear regression directly to coherence for a 
frequency by frequency assessment of the association between two time series.  
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4. APPLICATION OF THE CROSS SPECTRUM 

For the analysis of the interdependence relations between Romania’s agri-
food imports and exports I used the monthly data from the period 2000-2008. 

 Source: The Statistics Bulletins of Foreign Trade,NIS (2000-2009)
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Figure 2. The evolution of the Romanian monthly foreign trade in agricultural products and the 

exchange rate RON/EUR, 2000–2008. 

Here are my findings after studying the interdependence relations between 
Romania’s exports and imports of agricultural products and after highlighting 
especially the connection in the synchronous and asynchronous approaches (phase 
lag) for the various frequency components: 

– The power spectrum of the two foreign trade flows had the following 
maximum recorded values for the frequencies f = 12 (fE (12) = 36072.13) in the case 
of exports and f = 12 (fI(12) = 43543.08) in the case of imports; 
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Figure 2. Cross Periodogram (Real). 
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– The cospectral density (cj) and quadrature spectral density (qj) had the 
following maximum levels: f12 = 39421.98, respectively q12 = 1957.61 which 
indicates the possible phase correlations related to those frequencies;  namely qj≠ 0 
for j=1,2,… 11 shows that asynchronous correlation for such frequencies are 
possible;  

– The phase spectrum values were very close for all frequencies, which 
confirm the persistence of "delayed" connection, among which there is the one that 
occurred after 6 months. 
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Figure 3. Phase Spectrum. 

– The coherence value was significantly higher for j = 12 and thus illustrates 
the fact that those components describing one complete oscillations across the 
interval are the most intensively correlated. Therefore intense correlations for 
frequencies 6 and 4 resulted; 

– When export increased by an oscillation, the growth average of the 
variation of import frequency 12 was 1.13. 
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Figure 4. Gain of X over Y. 
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5. CONCLUSIONS 

An important foreign trade characteristic is represented by the fluctuating 
nature of this activity. Corresponding to the spectral analysis optics, an evolution 
process in time can be regarded as an aggregate of systematic oscillations whose 
frequency and amplitude differ. The oscillations of different frequencies are over-
lapped, forming a complex fluctuating process, which can be investigated in the 
conditions of the existence of a large enough number of numerical values regarding 
the respective phenomenon evolution. By the analysis of interdependency relations 
between the two components of the agricultural products trade balance in which we 
focused upon the relation intensity in the synchronous and mainly in asynchronous 
optics (phase lag) for the different frequency components, the present paper 
highlights the main spectral analysis characteristics and their practical application. 
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