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Abstract 
The paper studies the dynamic conditional correlations (DCC Multivariate GARCH models) of 
risks for 31 major financial markets, using Expected Shortfall as proxies for these markets' risk. 
We selected several specifications of the Generalized Orthogonal GARCH model and of the 
Copula Asymmetric Generalized DCC model. Most of the GARCH-Copula models outperform 
standard DCC-GARCH and GO-GARCH models. We further study the nature of the processes 
driving these correlation series, finding the correlations non-stationary (but not ‘explosive’) and 
exhibiting multifractal properties. Moreover, some DCCs may act as triggers (at least in a 
‘nonlinear’ Granger sense) for others. Finally, we show evidence of cross-market risk spread 
during the 2007-2010 turmoil, pandemic and Ukrainian war crises. 

Keywords: GO-GARCH DCC, Copula-GARCH DCC, multivariate affine Normal-Inverse 

Gaussian distribution,  Expected Shortfall, financial crises 

JEL Classification: C10; C13; G15; G32 

                                                           
1 West University of Timisoara, Faculty of Economics and Business Administration, Timisoara, Romania; 

bogdan.dima@e-uvt.ro 
2 Institute for Economic Forecasting, Romanian Academy, albul@ipe.ro 

3* West University of Timisoara, Faculty of Economics and Business Administration; East European Center for 
Research in Economics and Business (ECREB), Timisoara, Romania; Institute of Advanced Environmental 
Research, West University of Timișoara. Email:stefana.dima@e-uvt.ro Corresponding author. 

4 West University of Timisoara, Faculty of Economics and Business Administration, Timisoara, 
roxana.ioan@e-uvt.ro 

5 West University of Timisoara, Doctoral School of Economics and Business Administration, Timisoara, 
anca.ionascuti96@gmail.com 

1 University of Craiova. Email: marian.siminica@edu.ucv.ro 

1
. 



DIMA, ALBU, DIMA, IOAN, SARAOLU IONAŞCUŢI & SIMINICA 

 Institute for Economic Forecasting 6 

1. Introduction 

A bitter lesson of the latest crises, such as the 2007-2010 financial and real turmoil, the pandemic 
crisis, or the Ukrainian war, is that large endogenous and exogenous shocks affect the ecosystem 
of international financial markets. Such shocks can push these markets ‘far from equilibrium’ for 
significant periods and disrupt their ‘business as usual’ mechanisms. Worst, even if the shocks 
initially originate at the level of a single market, various contagion mechanisms may lead to a 
worldwide spread of risks. Hence, studying risk connectivity between international financial 
system’s globalized components is a hot topic nowadays.  

Engle (2002)'s Dynamic Conditional Correlation Multivariate GARCH (DCC-GARCH) is a popular 
model frequently used in the literature to study cross-market dynamic correlations and to estimate 
interconnections between different types of assets, markets, and countries. Compared to the 
ARCH and GARCH models, the so-called DCC-GARCH embraces several models that estimate 
covariations between assets based on different approaches. According to Andersson-Säll and 
Lindskog (2019), the first DCC-GARCH models were the Vector Error Correction (VEC-GARCH), 
the BEKK models, and Bollerslev ’ Constant Conditional Correlation (CCC-GARCH). Based on 
the CCC-GARCH, the DCC-GARCH was developed to give a computational advantage regarding 
large covariance matrix estimation. This advantage resides in the number of estimated 
parameters independent of the number of series to be assessed in the correlation process. The 
DCC-GARCH model describes the time-varying nature of conditional correlations among markets 
that arise under the impact of various regional or international driving forces. Large time-varying 
covariance matrices are essential for researchers in vector auto-regressions. Considering that 
asset allocation and risk assessment mostly rely on correlations, forecasted return covariance 
matrices are, as Engle (2002) argued, also required for building and managing optimal portfolios. 
As Sabkha and Peretti (2018) reasoned, this model is suitable when investigating financial 
phenomena, such as risk spillover, co-movements, and contagion. For instance, Kocaarslan et 
al. (2017) investigate the impacts of volatility expectations in oil, gold, currency, and the U.S. stock 
markets on time-varying conditional correlations between BRIC and U.S. stock markets. 
Syllignakis and Kouretas (2011) review the time-varying conditional correlations to the weekly 
index returns of seven emerging stock markets of Central and Eastern Europe. Cai et al. (2016) 
consider the DCCs between U.S. and eight emerging East Asian stock markets and analyze their 
dynamic equicorrelation.  Song et al. (2018) examine the dynamic conditional correlations 
between the U.S. and Korean financial markets. Karfakis and Panagiotidis (2015) study the 
effects of the 2007-2010 crisis on the conditional correlations between three exchange rate 
returns (USD/EUR, JPY/USD, and USD/GBP). Kim et al. (2015) identify the spillover effects of 
the recent U.S. financial crisis on five emerging Asian countries based on an approach that 
simultaneously estimates the conditional correlation coefficient and the effects of its determining 
factors over time. 

Nevertheless, despite its extended content, we note some limitations of this literature. For 
instance, the markets’ returns are often involved in studies. However, the cross-sectional 
correlations of the returns are not the ultimate proof of risk spread and contagion. Two markets 
may have similar return dynamics but very different risk profiles .  

Also, most studies make use of standard DCC-GARCH models, but there are other models that 
can be used as well. For instance, van der Weide (2002)’s Generalized Orthogonal GARCH 
model or the Copula Asymmetric Generalized DCC, as they might provide more robust and 
consistent results. Perhaps, more importantly, once estimates of dynamic correlations are 
obtained, their nature and specific properties are not always studied in detail. Considering that 
the two models, Generalized Orthogonal GARCH model and the Copula Asymmetric Generalized 
DCC, were underutilized in the literature, we can only consider few studies. For example, Jondeau 
and Rockinger (2006) used the Copula-GARCH model to test for conditional dependencies, 
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Messaoud and Aloui (2015) used the Copula-GARCH model to analyze asymmetric dependence, 
Nasri and Rémillard (2019) used copula-based dynamic models in order to capture the 
dependencies between various time series, Isenah and Olubusoye (2016) used the GO-GARCH 
model in order to analyze and forecast the exchange rate dynamics. However, we go beyond 
these studies that mostly involve markets’ returns, by focusing on the dynamic conditional 
correlations of risks.   

Therefore, we propose a three-fold contribution to this topic: 

1. We involve the Expected Shortfall (ES) for each financial market as a coherent measure of risk 
to provide estimates for the 31 major developed and emergent stock markets (of international or 
regional importance) within the sample. We employ the ES measure in contrast to the literature 
where Value at Risk (VaR) is mainly used as a risk estimation measure (such as, Boman (2019), 
Afzal et al. (2021) and so on). Why? Because the ES implies the main properties a risk measure 
should fulfil in order to be coherent, namely, monotonicity, translation invariance, homogeneity 
and subadditivity (according to Acerbi and Tasche (2002), only the ES measure can assure the 
last property).   

2. Compared to the current research where dynamic conditional correlations of risks are analyzed 
based on multivariate GARCH models, we contribute to the literature by selecting several DCC-
GARCH models that were underutilized (namely, 8 GO-GARCH DCC models and one Copula-
GARCH DCC model). We obtain dynamic correlations between these markets’ individual ES 
series based on their best (as selected by the average log-likelihood differences between them 
and the constant mean model). The use of the GO-GARCH DCC models and Student Copula 
Asymmetric Generalized DCC models might provide better results in terms of log-likelihood.  

3. We examine in detail the main features displayed by the series of these correlations and 
additional checks for potential causality linkages among DCC series. A key contribution here is 
that we test the spread of risk between some international/regional relevant markets, both 
developed and emerging.  

We find that the results of DCC analysis are significantly sensitive to model selection, with a 
Copula-GARCH model providing the best estimates. We also find that particular DCC series 
between pairs of markets can be driven by non-stationary (but not "explosive") processes with 
multifractal features and may be causally (at least in a non-linear Granger sense) interlinked.  

The following section describes the methodology and the international dataset's leading 
properties. Section 3 reports the main results and checks for causality between the DCC series 
and comments, while the last section concludes.  

2.  Methodology and international data 
To empirically assess the existence of co-movements between financial markets risks, two issues 
should be addressed beforehand. The first one is related to properly selecting an adequate risk 
estimator. The second refers to involving a robust technique for detecting the connections 
between individual markets' risk estimates. 

For tackling the first issue, we consider the Expected Shortfall (ES) as a suitable measure of risk. 
The ES’s main advantages will be further emphasized. Moreover, we involve two different 
versions of the Dynamic Conditional Correlation (DCC) models to address the second issue.  

Expected Shortfall as a risk estimator 

As Yamai and Yoshiba (2002:182) argue: "It is a well-known fact that value-at-risk (VaR) models 
do not work under market stress. VaR models are usually based on normal asset returns and do 
not work under extreme price fluctuations". Indeed, several problems are raised by VaR models. 
Among these: the assumption that assets’ returns follow a normal distribution and disregard the 
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fat-tails properties of observed returns; the fact that, by definition, VaR only measures the 
distribution quantile and ignores extreme loss beyond the VaR level; VaR can be criticized for not 
being sub-additive (Acerbi and Tasche (2002)), which means that, for a portfolio of financial 
assets, global risk can be larger than the sum of the stand-alone risks of its components measured 
by VaR (see Embrechts (2000) for an overview of some possible criticism). 

To alleviate such limits of VaR, the notion of coherent risk measures was introduced by Artzner 
et al. (1997, 1999). Such a coherent spectral measure of financial portfolio risk (i.e. a risk measure 

satisfying the four axioms of translation invariance, subadditivity, positive homogeneity, and 
monotonicity), which is also easy to estimate, is the Expected Shortfall (ES). For a specified 
level α, ES is the "average loss in the worst 100 α % cases" (Acerbi and Tasche (2002:1488)). 

From relation (1), it can be noticed that ES exclusively depends on the distribution of X and the 
level α, but not on a particular definition of quantiles. 

Although the involvement of ES provides several advantages over VaR, it should be mentioned 
that this does not represent the only available coherent measure of risk. For instance, Ahmadi-
Javid (2012) proposes an "entropic Value-at-Risk" (corresponding to the tightest possible upper 
bound obtained from the Chernoff inequality for the VaR as well as the conditional value-at-risk 
(CVaR)), which is also coherent. Nevertheless, we argue that investors widely know and use ES 
compared to alternative measures. Therefore, their ES estimation is more likely to account for 
their decision to select and trade their portfolios of financial assets. Hence, we further consider 
ES as the involved measure of risk. To assess the association between ES’s values for several 
markets, we further consider the framework of Dynamic Conditional Correlation (DCC) with a 
particular focus on two models, namely the GO-GARCH model and, respectively, the Student 
Copula Asymmetric Generalized DCC model (see Galanos(2022a) for model details). 

Dynamic Conditional Correlation Models 

The conditional correlation (CC) models decompose the covariance matrix into conditional 
standard deviations and correlations. The aim is to express the univariate and multivariate 
dynamics distinctively and to ease the estimation process. 

Nevertheless, Aielli (2011) argues that the estimation of DCC model might be inconsistent. Hence, 
a version of the DCC model is proposed (cDCC), which includes a corrective step to eliminate 
this inconsistency. However, the price to be paid here is that variance targeting cannot be used. 
We further refer to this version of the DCC models as baseline. 

The GO-GARCH Model 

The Factor ARCH models originally introduced by Engle et al. (1990) are designed to deal with 
time series for which the “structural errors” (unobserved underlying factors) are conditionally 
heteroscedastic. In the Orthogonal GARCH (O-GARCH) model proposed by Alexander (2001), 
uncorrelated and independent factors are involved. Similarly, the Generalized Orthogonal 
GARCH (GO-GARCH) model of van der Weide (2002) places the factors in an independent 
setting. Such a flexible approach provides several advantages as separability and weighted 
density convolution. As van der Weide (2002:549) argues: “potentially large covariance matrices 
can be parameterized with a fairly large degree of freedom while estimation of the parameters 
remains feasible. The model can be seen as a natural generalization of the O-GARCH model, 
while it is nested in the more general BEKK model”. 

However, the GO-GARCH framework’s involvement in modelling financial data should be done 
with caution. As Lanne and Saikkonen (2007:61) warn, models like the one of van der Weide 
(2002) are “rather restrictive for financial data in that they allow for no idiosyncratic shocks”. 
Therefore, we consider an alternative to this framework, namely the Copula Asymmetric 
Generalized DCC models. 
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The Student Copula Asymmetric Generalized DCC model 

The extension of the static copula approach to dynamic models, particularly GARCH, was 
proposed by Patton (2006). This paper extends the validity of the Sklarś theorem for the 
conditional case. Later developments address the relevance of using the GARCH framework with 
skewed Student distribution for studying financial data. For example, we mention Chollete et al. 
(2009), which uses GARCH with skewed Student distribution in the first stage and a regime-
switching model with a Canonical vine copula for the high dependence regime and a Normal 
copula for the low dependence regime in order to capture observed asymmetric dependence in 
international financial returns. The aim was to ensure that any founded asymmetry in the 
dependence structure truly reflects dependence and cannot be attributed to poor modelling of the 
marginals. The negative skew captures that the tails of some of the marginal distributions are 
typically longer on the left side. 

In this framework, the set 𝑥𝑡 of risk estimates can be supposed to follow a copula GARCH model 

with joint distribution given by: 

𝐹(𝑥𝑡|𝑚𝑡, ℎ𝑡) = 𝐶(𝐹1(𝑥1t|𝑚1t, ℎ1t), . . . , 𝐹𝑁(𝑥Nt|𝑚Nt, ℎNt))             (1) 

Here 𝐹𝑖 ,i=1,2,...,N is the conditional distribution of the 𝑖th marginal series density, while C is the 

N-dimensional Copula. 𝑚𝑡, ℎ𝑡 are the conditional mean and the conditional variance. ℎ𝑡 follows a 

GARCH process. If, for instance, such process is a GARCH(1,1) one, then: 

𝑥it = 𝑚it + 𝜀it, 𝜀it = √ℎit𝑧it 

ℎit = ω+α𝜀
2
it-1 + βhit-1                                         (2) 

𝑧it are i.i.d. random variables which conditionally follow a standardized skew Student distribution 

with skew and shape parameters 𝜉𝑖 , 𝜐𝑖, 𝑧it ∼ 𝑓𝑖(0,1, 𝜉𝑖 , 𝜐𝑖). 

The dependence structure of the margins is presumed to follow a Student copula with constant 
shape parameter. Meanwhile, its conditional correlation dynamics follows an Asymmetric 
Generalized DCC model. 

International data 

The daily closing returns of 31 major developed and emergent stock markets’ indexes (S&P 500, 
DAX, NIKKEI 225, IBOVESPA, MERVAL, HANG SENG, AEX, Austrian Traded Index, S&P/ASX 
200, BEL 20, S&P BSE SENSEX, CAC 40, FTSE 100, S&P/TSX, IBEX 35, ISEQ All Share, 
Jakarta Composite Index, FTSE Bursa Malaysia KLCI, KOSPI, IPC MEXICO, S&P/NZX 50, OMX 
Stockholm 30, SMI PR, STI, TSEC, SSE, JSE, PSEi, USD/TND, USD/BDT and BIST 100) are 
collected from Yahoo Finance (https://finance.yahoo.com/) for a period between 2005/01/01 and 
2022/11/30 by using the R package “yfR” (Perlin, 2021). We remove the non-available data, 
ending with 1980 observations. In addition, as entirely exogenous variables, we collect for the 
same period and from the same source data related to Brent Crude Oil and natural gas prices (as 
traded on New York Mercantile Exchange). 

As displayed in Table 1, all these tests reject the assumption of multivariate normality. 
Nevertheless, we need to account that multivariate GARCH (MGARCH) models are usually 
estimated under multivariate normality. If data violate such an assumption, the obtained estimates 
might be biased. Hence, all the MGARCH specifications derived from such an assumption should 
be considered with caution for our dataset. 
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Table 1. Multivariate normality (MVN) tests for market ES (full sample)  

Test Test value p-value Conclusion for multivariate normality 

Mardia Skewness 708575.188 0 NO 

Mardia Kurtosis 1650.179 0 NO 

Henze-Zirkler 9.795 0 NO 

Doornik-Hansen 539173.2 0 NO 

E-statistic 270.896 0 NO 

Notes: This table reports for the entire dataset the results from Mardia (1970; 1974), Henze and Zirkler (1990), 
Doornik and Hansen (2008) and “E-statistic” (Szekely and Rizzo, 2005; 2013;2017, Rizzo and Szekely, 
2016, Mori et al., 2021) tests of multivariate normality in markets Expected Shortfall data. The null 
hypothesis of all the tests is that the data sample comes from a multivariate normal distribution. Mardia test 
shows multivariate skewness and kurtosis coefficients and their corresponding statistical significance. The 
Henze-Zirkler (HZ) test is based on a non-negative functional distance that measures the distance between 
two distribution functions. The test statistic HZ is approximately log-normally distributed if the data is 
multivariate normal. The energy test of multivariate normality is an affine invariant test based on a 
characterization of equal distributions by energy distance. All these tests are implemented by Korkmaz et 
al. (2014).  

3.  Results and comments 

Main results 

We further proceed to the estimation of GO-GARCH and GARCH-Copula models. Table 2 reports 
the main features of various specifications for such models. 

Table 2. Various GO-GARCH and GARCH-Copula models specification 

Model 
nr. 

Model  

label 

Mean 
specification 

Variance model Distribution 

model 

Transform
ations 

External 
regresso

rs in 
mean 
model 

1 “C” Constant Glosten-Jagannathan-
Runkle (GJR) 
GARCH; GARCH[1,1]; 
no variance targeting 

Multivariate 
distribution with 
generalized 
hyperbolic margins 

No No 

2 “AR(2)” AR(2) Glosten-Jagannathan-
Runkle (GJR) 
GARCH; GARCH[1,1]; 
no variance targeting 

Multivariate affine 
Normal-Inverse 
Gaussian 

No No 

3 “ARX(2)” AR(2) Glosten-Jagannathan-
Runkle (GJR) 
GARCH; GARCH[1,1]; 
no variance targeting 

Multivariate 
distribution with 
generalized 
hyperbolic margins 

No Yes 

4 “VAR(2)”” The mean vector 
is derived from a 
VAR(2) model 

Glosten-Jagannathan-
Runkle (GJR) 
GARCH; GARCH[1,1]; 
no variance targeting 

Multivariate 
distribution with 
generalized 
hyperbolic margins 

No No 

5 “VARX(2)”” The mean vector 
is derived from a 
VAR(2) model 

Glosten-Jagannathan-
Runkle (GJR) 
GARCH; GARCH[1,1]; 
no variance targeting 

Multivariate affine 
Normal-Inverse 
Gaussian 

No Yes 
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Model 
nr. 

Model  

label 

Mean 
specification 

Variance model Distribution 

model 

Transform
ations 

External 
regresso

rs in 
mean 
model 

6 “robVARX(2)”” The mean vector 
is derived from a 
robust version of 
VAR(2) model 

Glosten-Jagannathan-
Runkle (GJR) 
GARCH; GARCH[1,1]; 
no variance targeting 

Multivariate affine 
Normal-Inverse 
Gaussian 

No Yes 

7 “robVARX(1)+NIG” The mean vector 
is derived from a 
robust version of 
VAR(1) model 

Asymmetric power 
ARCH; GARCH[1,1]; 
no variance targeting 

Multivariate affine 
Normal-Inverse 
Gaussian 

No Yes 

8 “robVARX(1)+GH”” The mean vector 
is derived from a 
robust version of 
VAR(1) model 

Asymmetric power 
ARCH; GARCH[1,1]; 
no variance targeting 

Multivariate affine 
Normal-Inverse 
Gaussian 

No Yes 

9 “DCC timecopula 
MVT:ML” 

ARMA(1,5); 
ARCH volatility 
included in mean 
model 

Glosten-Jagannathan-
Runkle (GJR) 
GARCH; GARCH[1,1]; 
variance targeting 

Student Copula Pseudo ML 
transformat
ion 

Yes 

Notes: All models from 1 to 8 are GO-GARCH models. Model 9 is a time-varying DCC GARCH-Copula. 
The Independent Component Analysis (ICA) method for estimating the orthogonal matrix U (FastICA of 
Hyvärinen and Oja, 2000) or the Robust Accurate, Direct ICA aLgorithm (RADICAL) (Learned-Miller and 
Fisher III, 2003) applies for estimations. As exogenous variables, Brent Crude Oil and natural gas prices 
from New York Mercantile Exchange are involved. These models are implemented in R package 
“rmgarch” (Galanos, 2022b). 

Figure 1. Difference of average log-likelihood versus constant mean and 
multivariate normal model for different models  

 
Notes: The figure reports the average log-likelihood differences between various multivariate generalized 

orthogonal GARCH and GARCH-Copula models described in Table 2 and the constant mean model. 

Of all the models, the GARCH-Copula model 9 provides the best log-likelihood. It is important to 
note that this model uses a Student Copula to model data distribution. As it concerns the GO-
GARCH models, the best fit occurs for model 7, including a VARX(1) specification in mean and a 
multivariate affine Normal-Inverse Gaussian distribution. These two models display the best 
marginal explanatory power compared with a baseline constant mean specification GO-GARCH 
model. Thus, we will supplementary involve these two models and compare their outcomes. 
However, for the cases of Standard and Poor's 500 (S&P 500) and Brazilian Bovespa Index 
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(IBOVESPA) markets, the two methods provide to a certain extent different results. Several 
differences and similarities between the outcomes of these two methods can be highlighted here. 

First, for all estimates, the GARCH-Copula model 9 shows levels of DCCs that are significantly 
lower (in absolute terms) than GO-GARCH model 7. In addition, for some periods, there are 
important divergences in the evolving pattern of conditional correlations displayed by these two 
methods. It is interesting to note that such divergences tend to be placed during the 2011-2012 
markets’ recovery period and, respectively, in 2015 and in 2018’s episode of significant volatility. 
Nevertheless, for the 2007-2010 financial crises, both methods illustrate dynamic processes of 
decoupling/coupling of different markets’ evolutions with rapid changes in estimates from low to 
high (and back to low at the end of 2010) levels. This last outcome can be associated with 
individual markets’ non-uniform post-crisis recovery speed. Hence, these two methods possess 
different capacities to capture the divergences in markets’ evolutionary patterns. 

Second, the shape of DCCs estimates provided by the GO-GARCH model suggests higher 
volatility of the considered relationships between markets than those corresponding to the 
GARCH-Copula model. Indeed, there are several spikes in the GO-GARCH estimates evolution, 
and this model displays significantly more pattern shifts than the GARCH-Copula model. In other 
words, the connections between markets are estimated to be less stable by the first model in 
comparison with the second model. 

Third, both methods show important differences in the dynamic correlations between developed 
and emerging markets during the entire analysis period. This last type of correlation is far less 
stable and is subjected to high amplitude estimates’ changes. In addition, these two methods 
show that the risk spread across markets was taking place at different speeds until the crisis 
reached its global dimension. 

Fourth, both models capture a peak in the dynamic correlations between markets’ risk during 
March-May 2020, followed by a downward trend of these correlations and a new upward evolution 
during the Ukrainian war. In other words, these models can capture the effects of large exogenous 
shocks on the bi-univocal spread of risks between financial markets. As such shocks arise, the 
markets’ risk profiles become more correlated. 

Fifth, as the differences in log-likelihoods between models including or not the Brent Crude Oil 
and natural gas prices as external regressors show, these two variables play more than a 
‘decorative’ role and they can change estimations’ outcomes. Of course, we do not explicitly 
account for the involved mechanisms and do not formally investigate their impact. Nevertheless, 
we argue that it is highly plausible that their dynamics can influence investors’ expectations about 
future market status and, henceforth, their current trading decisions. 

Sixth, a justified question can be phrased as follows: What is the nature of the DCCs processes 
connecting the market risks? In order to attempt to answer such a question, we further test the 
null hypothesis of non-stationary processes versus the alternative hypothesis of the presence of 
“explosive” evolutions in the DCCs series. Table 3 reports the results of three tests (Augmented 
Dickey-Fuller test, Supremum ADF test and the generalized SADF test) for the pairs of S&P 500 
ES values versus the corresponding values for the other markets in our dataset. These results 
show that (with the possible exceptions of the correlation between the risks of S&P 500 and two 
financial markets, namely Austrian Traded Index and MERVAL risks), the association between 
markets’ risks are driven by unit root processes. Therefore, at least for this subset of markets, 
one can account for the existence of a “long-run” functional instability in the connection between 
their specific risks. 

Nevertheless, if we consider instead a subset of data formed by the pairs between a key Latin 
America market (IBOVESPA) risk and the other markets' risks, the same conclusions can be 
derived (as shown in Table 4). 

Therefore, the outcome of the “long-run” instability of markets’ risks appears to be robust across 
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different sub-samples2. However, such functional instability does not imply the existence of 
“explosive” processes in DCCs' underlying mechanisms.  

Table 3. Tests of unit root versus “explosive” processes in GARCH-Copula 
model 9 estimates for S&P 500 ES pairs 

Pair of markets ADF test value SADF test value GSADF test value 

S&P 500/ AEX -11.7 

Accept H0 

-1.70 

Accept H0 

1.11 

Accept H0 

S&P 500/  Austrian 
Traded Index 

-12.5 

Accept H0 

-2.07 

Accept H0 

3.27 

Reject H0 at the 5%; accept H0 
at 10% and 1% 

S&P 500/ S&P/ASX 200 -11.8 

Accept H0 

-1.56 

Accept H0 

0.503 

Accept H0 

S&P 500/ BEL 20 -11.5 

Accept H0 

-2.99 

Accept H0 

0.088 

Accept H0 

S&P 500/ S&P BSE 
SENSEX 

-12.3 

Accept H0 

-1.63 

Accept H0 

0.777 

Accept H0 

S&P 500/ IBOVESPA -10.8 

Accept H0 

-1.77 

Accept H0 

0.992 

Accept H0 

S&P 500/ CAC 40 -11.2 

Accept H0 

-2.14 

Accept H0 

2.09 

Accept H0 

S&P 500/ FTSE 100 -10.5 

Accept H0 

-1.64 

Accept H0 

1.06 

Accept H0 

S&P 500/ DAX -11.5 

Accept H0 

-2.24 

Accept H0 

0.816 

Accept H0 

S&P 500/ S&P/TSX -11.5 

Accept H0 

-2.04 

Accept H0 

1.40 

Accept H0 

S&P 500/ HANG SENG -11.8 

Accept H0 

-1.51 

Accept H0 

0.053 

Accept H0 

S&P 500/ IBEX 35 -11.2 

Accept H0 

-1.80 

Accept H0 

2.10 

Accept H0 

S&P 500/ ISEQ All Share -11.2 

Accept H0 

-2.51 

Accept H0 

1.29 

Accept H0 

S&P 500/ Jakarta 
Composite Index 

-11.1 

Accept H0 

-2.24 

Accept H0 

1.55 

Accept H0 

S&P 500/ FTSE Bursa 
Malaysia KLCI 

-12.0 

Accept H0 

-2.05 

Accept H0 

0.492 

Accept H0 

S&P 500/ KOSPI -11.4 

Accept H0 

-0.776 

Accept H0 

1.13 

Accept H0 

S&P 500/ MERVAL -10.6 

Accept H0 

-1.95 

Accept H0 

2.69 

Reject H0 at the 10%; accept H0 
at 5% and 1% 

S&P 500/ IPC MEXICO -10.3 -0.991 2.44 

                                                           
2 All the equivalent results for the GO-GARCH model 7, not reported here but available by request from 

authors, are similar. 



DIMA, ALBU, DIMA, IOAN, SARAOLU IONAŞCUŢI & SIMINICA 

 Institute for Economic Forecasting 14 

Pair of markets ADF test value SADF test value GSADF test value 

Accept H0 Accept H0 Accept H0 

S&P 500/ Nikkei 225 -11.5 

Accept H0 

-1.40 

Accept H0 

1.68 

Accept H0 

S&P 500/ S&P/NZX 50 -11.9 

Accept H0 

-1.58 

Accept H0 

0.826 

Accept H0 

S&P 500/ OMX 
Stockholm 30 

-12.3 

Accept H0 

-1.49 

Accept H0 

1.02 

Accept H0 

S&P 500/ SMI PR -10.6 

Accept H0 

-1.37 

Accept H0 

0.878 

Accept H0 

S&P 500/ STI -11.8 

Accept H0 

-1.23 

Accept H0 

1.70 

Accept H0 

S&P 500/ TSEC -11.9 

Accept H0 

-2.92 

Accept H0 

1.59 

Accept H0 

S&P 500/ SSE -12.6 

Accept H0 

-1.87 

Accept H0 

0.968 

Accept H0 

S&P 500/ JSE -11.5 

Accept H0 

-1.34 

Accept H0 

1.76 

Accept H0 

S&P 500/ PSEi -12.7 

Accept H0 

-2.68 

Accept H0 

0.536 

Accept H0 

S&P 500/ USD/TND -11.9 

Accept H0 

-1.70 

Accept H0 

1.36 

Accept H0 

S&P 500/ USD/BDT -11.6 

Accept H0 

0.260 

Accept H0 

0.577 

Accept H0 

S&P 500/ BIST 100 -12.5 

Accept H0 

-3.60 

Accept H0 

0.608 

Accept H0 

Notes: The table reports the values of the Augmented Dickey-Fuller (ADF) test, Supremum ADF test (SADF) 
of Phillips, Wu, and Yu (2011), and the generalized SADF (GSADF) of Phillips, Shi, and Yu (2015a, b). 
Finite-sample critical values based on the Monte Carlo method are considered. The null hypothesis of the 
tests is the presence of unit root. The alternative hypothesis is the presence of “explosive” dynamics during 
the entire period (ADF) or “explosive” dynamics in some part(s) of the sample (SADF and GSADF). The 
tests are implemented in the R package “exuber” (Vasilopoulos et al. (2020a,b)). The settings include a 
minimum window size equal to 36 days (around one and a half conventional trading months); a lag length 
equal to one, and the choice of the minimum duration of an episode of the „explosive” process using the 
rule of Phillips et al. (2015a). The critical values of ADF test are: -0.401 (at 10%); 0.002 (at 5%) and 0.761 
(at 1%). For the SADF test, these values are at 10%, 5% and 1%: 1.44, 1.64 and 2.21, while for GADF, 
these are 2.59, 2.80 and, respectively, 3.36. 

Table 4. Tests of unit root versus “explosive” processes in GARCH-Copula 
model 9 estimates for IBOVESPA ES pairs 

Pair of markets ADF test value SADF test value GSADF test value 

IBOVESPA/ AEX -10.3 
Accept H0 

-1.67 
Accept H0 

0.957 
Accept H0 

IBOVESPA/  Austrian 
Traded Index 

-11.0 
Accept H0 

-2.60 
Accept H0 

0.685 
Accept H0 

IBOVESPA/ S&P/ASX 
200 

-11.0 
Accept H0 

-1.39 
Accept H0 

1.31 
Accept H0 

IBOVESPA/ BEL 20 -9.86 -2.47 0.974 
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Pair of markets ADF test value SADF test value GSADF test value 

Accept H0 Accept H0 Accept H0 

IBOVESPA/ S&P BSE 
SENSEX 

-11.6 
Accept H0 

-1.55 
Accept H0 

0.301 
Accept H0 

IBOVESPA/ CAC 40 -10.1 
Accept H0 

-2.44 
Accept H0 

1.45 
Accept H0 

IBOVESPA/ FTSE 100 -9.99 
Accept H0 

-2.89 
Accept H0 

1.29 
Accept H0 

IBOVESPA/ DAX -10.4 
Accept H0 

-1.68 
Accept H0 

0.916 
Accept H0 

IBOVESPA/ S&P/TSX -10.5 
Accept H0 

-2.26 
Accept H0 

0.993 
Accept H0 

IBOVESPA/ HANG 
SENG 

-11.0 
Accept H0 

-1.39 
Accept H0 

1.24 
Accept H0 

IBOVESPA/ IBEX 35 -11.2 
Accept H0 

-2.01 
Accept H0 

0.441 
Accept H0 

IBOVESPA/ ISEQ All 
Share 

-10.9 
Accept H0 

-1.95 
Accept H0 

1.29 
Accept H0 

IBOVESPA/ Jakarta 
Composite Index 

-11.0 
Accept H0 

-0.567 
Accept H0 

0.714 
Accept H0 

IBOVESPA/ FTSE Bursa 
Malaysia KLCI 

-11.8 
Accept H0 

-2.32 
Accept H0 

0.546 
Accept H0 

IBOVESPA/ KOSPI -11.1 
Accept H0 

-1.39 
Accept H0 

0.186 
Accept H0 

IBOVESPA/ MERVAL -10.6 
Accept H0 

-1.96 
Accept H0 

1.03 
Accept H0 

IBOVESPA/ IPC 
MEXICO 

-10.8 
Accept H0 

-1.59 
Accept H0 

1.57 
Accept H0 

IBOVESPA/ Nikkei 225 -11.4 
Accept H0 

-1.68 
Accept H0 

1.66 
Accept H0 

IBOVESPA/ S&P/NZX 50 -10.5 
Accept H0 

-2.20 
Accept H0 

0.353 
Accept H0 

IBOVESPA/ OMX 
Stockholm 30 

-10.1 
Accept H0 

-1.66 
Accept H0 

1.91 
Accept H0 

IBOVESPA/ SMI PR -10.7 
Accept H0 

-2.19 
Accept H0 

1.45 
Accept H0 

IBOVESPA/ STI -10.9 
Accept H0 

-1.27 
Accept H0 

1.35 
Accept H0 

IBOVESPA/ TSEC -11.4 
Accept H0 

-1.63 
Accept H0 

0.637 
Accept H0 

IBOVESPA/ SSE -11.5 
Accept H0 

-3.34 
Accept H0 

0.579 
Accept H0 

IBOVESPA/ JSE -11.3 
Accept H0 

-1.94 
Accept H0 

0.750 
Accept H0 

IBOVESPA/ PSEi -9.99 
Accept H0 

-1.92 
Accept H0 

2.10 
Accept H0 

IBOVESPA/ USD/TND -10.0 
Accept H0 

-2.19 
Accept H0 

1.12 
Accept H0 

IBOVESPA/ USD/BDT -10.6 
Accept H0 

-1.64 
Accept H0 

0.955 
Accept H0 

IBOVESPA/ BIST 100 -11.4 
Accept H0 

-2.66 
Accept H0 

0.451 
Accept H0 

Note: The specifications and the interpretation of the results are the same as in Table 3. 
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Causality checks between DCCs: The Variable-Lag Transfer Entropy Ratio approach 

Until this point, we analyzed the DCCs between autonomous pairs of markets. Nevertheless, are 
the dynamic correlations between these markets fully independent with respect to others? If we 
consider the case of international investors trading geographically diversified portfolios and using 
different markets to implement their hedging strategies, the answer to such question is negative. 

In order to check for the potential causality between DCCs, we involve the Transfer Entropy (TE) 
approach. This approach can be viewed as a non-linear extension of Granger causality 
(Amornbunchornvej et al. (2021)) and it is a model-free measure designed as the Kullback-Leibler 
distance of transition probabilities (Dimpfl and Peter (2013)). In the implementation, we follow the 
arguments from Amornbunchornvej et al. (2021:1). According to these arguments, a typical 
operationalization of the TE: “make a strong assumption that every time point of the effect time 
series is influenced by a combination of other time series with a fixed time delay… However, the 
assumption of the fixed time delay does not hold in many applications, such as collective behavior, 
financial markets, and many natural phenomena”. To address this issue, they propose a Variable-
Lag Transfer Entropy (VL-TE) that relaxes the assumption of the fixed time delay and it allows 
causes to influence effects with arbitrary time delays. 

In this framework, for two time series “X” and “Y” a VL-TE Ratio can be involved for causality 

inference such as: 

VL-TE(X,Y)Ratio=
VL-TE𝑋→𝑌
VL-TE𝑌→𝑋

                                                                    (4) 

If there is a value of this ratio greater than 1, this implies that “X” causes “Y” based on the VL-TE 
approach.  Higher the value of this ratio, greater the strength of the involved causality. Table 5 
reports the values of the VL-TE Ratio for several DCCs series, which are estimated based on 
GARCH-Copula model 9. 

The results depict a heterogeneous framework, with only some DCCs as predictors of other 
DCCs' evolutions. For instance, the dynamic conditional correlations between the United States 
S&P 500 and Brazilian IBOVESPA appear to be (nonlinear) Granger triggers of the DCCs 
occurring between each of these markets and other developed and emerging ones. Meanwhile, 
other pairs (like FTSE 100 and SEE or DAX and S&P/ASX 200) are not predictors of other DCCs. 
Overall, no strong regularity regarding potential causality running between different DCCs can be 
inferred based on these results. Yet these results reveal that the trading decisions adopted by 
investors operating on international markets may lead to pair synchronization in risk evolution 
amongst these markets. 

Table 5. Variable-lag Transfer Shannon Entropy Ratio causality tests for some 
DCCs (estimation based on GARCH-Copula model 9)  

Hypothesis Transfer Entropy 
Ratio 

Conclusion 

S&P 500/ IBOVESPA causes  S&P 500/ DAX 7.077 True 

S&P 500/ IBOVESPA causes S&P 500/ Nikkei 225 0.974 False 

S&P 500/ IBOVESPA causes S&P/ASX 200/ BEL 20 2.681 True 

DAX/ S&P/ASX 200 causes Nikkei 225/ KOSPi 0.826 False 

FTSE 100/ MERVAL causes DAX/ STI 0.598 False 

Nikkei 225/ Jakarta Composite Index causes CAC 40/ 
AEX 

1.212 True 

HSI/ IBOVESPA causes S&P 500/ JSE 0.834 False 
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Hypothesis Transfer Entropy 
Ratio 

Conclusion 

S&P 500/ PSEi causes HSI/ TSEC 1.121 True 

FTSE 100/ SEE causes Nikkei 225/ PSEi 0.517 False 

FTSE 100/ S&P BSE SENSEX causes KOSPI/ STI 0.894 False 

S&P 500/ DAX causes S&P 500/ ISEQ All Share  4.838 True 

BEL 20/ Austrian Traded Index causes OMX 
Stockholm/ SMI PR 

1.661 True 

S&P 500/ KOSPi causes S&P BSE SENSEX/ 
USD/BDT 

1.010 True 

FTSE 100/ BEL 20 causes CAC 40/ USD/TND 1.473 True 

CAC 40/ IBEX 35 causes DAX/ BIST 100 1.749 True 

S&P 500/ S&P/TSX causes S&P/ASX 200/ S&P BSE 
SENSEX 

1.298 True 

S&P 500/ MERVAL causes STI/ FTSE Bursa Malaysia 
KLCI 

1.810 True 

S&P 500/ FTSE 100 causes IBOVESPA/ SSE 1.481 True 

DAX/ S&P/TSX causes HSI/ KOSPI 0.971 False 

FTSE 100/ BEL 20 causes AEX/ ISEQ All Share  3.146 True 

S&P 500/ DAX causes IBOVESPA/ S&P/TSX 1.256 True 

FTSE 100/ CAC 40 causes HSI/ JSE 1.234 True 

S&P/TSX/ KOSPi causes S&P/ASX 200/ STI 1.144 True 

S&P 500/ FTSE 100 causes USD/BDT/ BIST 100 0.909 False 

DAX/ IBOVESPA causes STI/ Jakarta Composite 
Index 

5.467 True 

Notes: If the Transfer Entropy Ratio exceeds 1, then series “X” causes series “Y”. The maximum possible 
time delay is chosen using cross-correlation. The significant-level threshold for Transfer Entropy 
bootstrapping by Dimpfl and Peter (2013) is set to be 5%. The number of times bootstrapping is equal to 
10. The method is described by Amornbunchornvej et al. (2021) and implemented by Amornbunchornvej 
(2022). 

Comments 

We find that major financial markets display bi-univocal dynamic correlations between their risks, 
as captured by ES estimators. We also find that such correlations are not stable on “long-run”, 
and some substantial endogenous and exogenous shocks are driven by their evolutions. 
Nonetheless, several comments must be made in regard to the plausibility of these findings.  

First, "correlation" is not the same as "causality": we do not explicitly address the issue of our 
dataset’s leading markets’ identification. However, some DCCs may act as triggers (at least in a 
(nonlinear) Granger sense) for others. Therefore, this analysis suggests that a rise in risk spread 
between two individual markets can trigger the spread of risk between other connected markets. 
This is particularly true for the major United States and European markets and, to a lesser extent, 
for the conditional correlations between Latin America and South-Asia markets. Such outcome 
may reflect the deepening of international market inter-linkages driven by financial globalization, 
the increased activity of international traders and a higher sophistication of their hedging 
strategies, as well as the fact that some of the markets included in our dataset play a global role, 
while others are mainly regionally relevant. Nonetheless, such potential bi and multi-vocal 
causality does not appear stable on “long-run”. As large endogenous and exogenous shocks 
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arise, accommodation adjustments in the implied mechanisms occur. 

Second, significant international bubbles/crashes seem to be periods of markets’ risk profile 
synchronization: phenomena like overreactions/panic lead the trading decisions during such 
periods (with variations that can be influenced by various factors; the behavioral factors for 
instance include: herding behavior, bounded rationality, risk-seeking trading decisions, resistance 
to new information or overconfidence, and social and cultural factors). Notably, we find strong 
evidence of cross-market risk spread during the 2007-2010 financial and real turmoil, the 
pandemic and the Ukrainian war. This outcome contrasts with the “no contagion, only 
interdependence” result of Forbes and Rigobon (2002). However, it is supported by other findings 
in the literature such as, Syllignakis and Kouretas (2011); Naoui et al. (2010); Maghyereh et al. 
(2022); Cai et al. (2016); Tantipaiboowong et al. (2021); Ji et al. (2022). Therefore, we do not view 
the high inter-market co-movements during crisis periods as a simple continuation of previous 
cross-market linkages. Instead, we argue that crises’ specific mechanisms drive risk contagion 
processes during such periods. However, our data sample does not cover the three crises studied 
by Forbes and Rigobon (2002) (the 1997 East Asian crisis, the 1994 Mexican peso collapse, and 
the 1987 U.S. stock market crash). So, an extended analysis might be required to clarify if such 
crisis-related mechanisms are or not specific to the post-2000s period.    

Third, the results display specific sensitivity to the choice of DCCs estimation. Overall, most of 
the GARCH-Copula models outperform both standard and GO-GARCH models. Jointly with the 
multivariate non-normal distribution of data, it points toward the requirement of a careful selection 
of the models employed to capture cross-correlations between markets. 

Fourth, the differences between models, which involve or not the Brent Crude Oil and natural gas 
prices as external regressors, suggest that these two variables may play an essential role in the 
mechanisms driving the occurrence of DCCs. We argue that such a role can be related to a rise 
in the uncertainty surrounding the economic environment, directly associated with a shock at the 
level of these prices. Such uncertainty may directly impact investors’ trading decisions and related 
trading performances. In fact, the literature includes evidence of this (see Chiweza and Aye 
(2018); Bashar et al. (2013); Caporale et al. (2015)). Nevertheless, this argument does not involve 
any particular transmission channel for the effects induced by these two prices. Thus, a more 
extended study is required to highlight the potential mechanisms and better clarify the DCCs’ 
response reactions to adjustments in their levels. 

Fifth, we learn that the DCCs are driven by non-stationary (but not “explosive”) processes. In 
addition, such processes show multifractal properties. This result is perhaps not a surprise: on 
high frequencies (daily), one can typically expect only small amplitude adjustment processes in 
the linkages between markets’ risk. Of course, this does not hold during market crash periods 
when significant changes in risk occur. Consequently, any analysis over a time span covering 
both “business as usual” and crisis periods might reveal distinctive behaviors and characteristic 
scaling exponents in different parts of the risk series.  

Therefore, one interesting implication is that a standard hedge strategy efficiency might 
substantially vary over time under the impact of markets’ risk association. However, the opposite 
might also be true: while the investors from international markets implement more sophisticated 
trading strategies and build up more geographically diversified portfolios, the inter-linkages 
between markets’ risks become less stable. Broadly, the “fundamentals” that govern the markets 
may substantially change over time. This variation of the driving forces can affect the connections 
between markets and their corresponding risks. Based on our findings, it can be seen that market 
interconnectivity leads to prolonged instability of the financial systems at the global level. In this 
regard, more prudential supervision measures should be implemented in order to reduce financial 
market stress and volatility, and further to avoid the occurrence of bubbles and crises. 
Nonetheless, the design of improved policies should be carried out carefully and their capacity of 
implementation should also be considered. This could be a challenging task especially for 
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emerging countries where transparency, market discipline and financial institutions internal 
controls are weak. In this sense, emerging countries should take as example and follow the steps 
of developed countries in what concerns the strategies, the policies and the regulations they 
implemented..  

4.  Conclusions 
The DCC-GARCH models provide a flexible framework that allows the study of dynamic 
conditional correlations between international financial markets’ risks. For a group of 31 key 
markets, we find that such correlations occur and, at least for some pairs, they may be causally 
linked. However, the time series containing these correlations are not necessarily stable on the 
“long-run” and exhibit multifractal properties. 

Several limitations of our study can be mentioned here. First, we only consider a limited number 
(although relevant) of markets. An extension of our dataset may help to obtain more insights. 
Second, our analysis covers periods of high financial turmoil. Nevertheless, there are some 
significant differences between the 2007-2010, the pandemic and the Ukrainian war crises. A 
deeper examination of these crises’ consequences on cross-market risk spread is required. Third, 
the robustness of our findings concerning alternative measures of risk and estimation techniques 
should be checked. Fourth, the potential influence of various macroeconomic conditions is not 
examined here. However, such examination can lead to a better understanding of the exogenous 
perturbations. 

Despite such limitations, the key implication of our findings is that markets’ interconnectivity 
provides opportunities for global financial assets’ trade and it may also facilitate a prolonged 
instability of the international financial systems as a whole. Therefore, more concrete and 
prudential supervision measures may be helpful to promote corrective mechanisms and prevent 
extended periods of financial crises and functional instability. 

References 
Acerbi, C. and Tasche, D. 2002. On the coherence of expected shortfall. Journal of Banking & Finance, 26, 

pp.1487–1503. https://doi.org/10.1016/S0378-4266(02)00283-2. 

Afzal, F., Haiying, P., Afzal, F., Mahmood, A. and Ikram, A. 2021. Value-at-Risk Analysis for Measuring 
Stochastic Volatility of Stock Returns: Using GARCH-Based Dynamic Conditional Correlation 
Model. SAGE Open 11(1). https://doi.org/10.1177/21582440211005758. 

Aielli, G.P. 2011. Dynamic Conditional Correlation: On Properties and Estimation. Working paper (July 14, 
2011). http://dx.doi.org/10.2139/ssrn.1507743. 

Ahmadi-Javid, A. 2012. Entropic value-at-risk: A new coherent risk measure. Journal of Optimization Theory 
and Applications, 155, pp.1105-1123. https://doi.org/10.1007/s10957-011-9968-2. 

Alexander, C. 2001. Orthogonal GARCH, Chapter 2. In: Alexander, C., Ed., Mastering Risk. London: Financial 
Times-Prentice Hall, pp.21–38. 

Amornbunchornvej, C. 2022. VLTimeCausality: Variable-Lag Time Series Causality Inference Framework, R 
package version 0.1.4. [online] Available at: <https://cran.r-
project.org/web/packages/VLTimeCausality/index.html>. 
https://doi.org/10.32614/CRAN.package.VLTimeCausality. 

Amornbunchornvej, C., Zheleva, E. and Berger-Wolf, T. 2021.Variable-lag Granger Causality and Transfer 
Entropy for Time Series Analysis. ACM Transactions on Knowledge Discovery from Data, 15(4), 
Article 67, pp.1-30. https://doi.org/10.1145/3441452. 

Andersson-Säll, T. and Lindskog, J.S. 2019. A Study on the DCC-GARCH Model’s Forecasting bility with 
Value-at-Risk Applications on the Scandinavian Foreign Exchange Market. Available at: 
<http://www.diva-portal.org/smash/get/diva2:1283199/FULLTEXT01.pdf> [Accessed May 2024]. 



DIMA, ALBU, DIMA, IOAN, SARAOLU IONAŞCUŢI & SIMINICA 

 Institute for Economic Forecasting 20 

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. 1997. Thinking coherently. Risk, 10, pp.68-71. 

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. 1999. Coherent measures of risk. Mathematical Finance, 
9(3), pp.203–228. https://doi.org/10.1111/1467-9965.00068. 

Bashar, O. H., Wadud, I. M., & Ahmed, H. J. A., 2013). Oil price uncertainty, monetary policy and the 
macroeconomy: The Canadian perspective. Economic Modelling, 35, pp.249–259. 
https://doi.org/10.1016/j.econmod.2013.07.007. 

Boman, V. 2019. A comparison of multivariate GARCH models with respect to Value at Risk. Spring. Available 
at: <https://www.diva-portal.org/smash/get/diva2:1324825/FULLTEXT01.pdf> [Accessed May 
2024]. 

Cai, X.J., Tian, S.R. and Hamori, S. 2016. Dynamic correlation and equicorrelation analysis of global financial 
turmoil: evidence from emerging East Asian stock markets. Applied Economics, 48(40), pp.3789-
3803. https://doi.org/10.1080/00036846.2016.1145349. 

Caporale, G. M., Ali, F. M. and Spagnolo, N. 2015. Oil price uncertainty and sectoral stock returns in China: A 
time-varying approach. China Economic Review, 34, pp.311–321. 
https://doi.org/10.1016/j.chieco.2014.09.008. 

Chiweza, J.T. and Aye, G.C. 2018. The effects of oil price uncertainty on economic activities in South Africa. 
Cogent Economics & Finance, 6, p1518117. https://doi.org/10.1080/23322039.2018.1518117. 

Chollete, L.,  Heinen, A. and Valdesogo, A. 2009. Modeling international financial returns with a multivariate 
regime-switching copula. Journal of Financial Econometrics, 7(4), pp.437-480. 
https://doi.org/10.1093/jjfinec/nbp014. 

Dimpfl, T. and Peter, F.J. 2013. Using transfer entropy to measure information flows between financial 
markets. Studies in Nonlinear Dynamics and Econometrics, 17(1), pp.85-102. 
https://doi.org/10.1515/snde-2012-0044. 

Doornik, J.A. and Hansen, H. 2008. An Omnibus test for univariate and multivariate normality. Oxford Bulletin 
of Economics and Statistics, 70, pp.927-939. https://doi.org/10.1111/j.1468-0084.2008.00537.x. 

Embrechts, P. 2000. Extreme Value Theory: Potential and Limitations as an Integrated Risk Management 
Tool. Derivatives Use, Trading & Regulation 6, pp.449-456. Available at: 
<https://people.math.ethz.ch/~embrecht/ftp/evtpot.pdf> [Accessed May 2024]. 

Engle, R.F. 2002. Dynamic conditional correlation. Journal of Business and Economic Statistics, 20(3), 
pp.339-350. https://doi.org/10.1198/073500102288618487. 

Forbes, K. and Rigobon, R. 2002. No Contagion, Only Interdependence: Measuring Stock Market Co-
Movements. The Journal of Finance, 57(5), pp.2223-2261. https://doi.org/10.1111/0022-
1082.00494. 

Galanos, A. 2022a. The rmgarch models: Background and properties (Version 1.3-0). Available at: 
<https://cran.r-project.org/web/packages/rmgarch/vignettes/The_rmgarch_models.pdf> [Accessed 
May 2024].  

Galanos, A. 2022b. rmgarch: Multivariate GARCH models. R package version 1.3-9. 
https://doi.org/10.32614/CRAN.package.rmgarch. 

Henze, N. and Zirkler, B,. 1990. A Class of Invariant Consistent Tests for Multivariate Normality. 
Communications in Statistics - Theory and Methods, 19(10), pp.3595-3617. 
https://doi.org/10.1080/03610929008830400. 

Hyvärinen, A. and Oja, E., 2000. Independent component analysis: Algorithms and applications. Neural 
Networks, 13(4-5), pp.411–430. https://doi.org/10.1016/S0893-6080(00)00026-5. 

Isenah, G.M. and Olubusoye, O.E. 2016. Empirical Model for Forecasting Exchange Rate Dynamics: the GO-
GARCH Approach. CBN Journal of Applied Statistics, 7(9), pp.179-208, Article 9. Available at: 
<https://dc.cbn.gov.ng/jas/vol7/iss1/9. 

Ji, X.P., Wang, S.J., Xiao, H.G. Bu, N.P. and Lin, X.N., 2022. Contagion Effect of Financial Markets in Crisis: 
An Analysis Based on the DCC-MGARCH Model. Mathematics, 10(11), p1819. 
https://doi.org/10.3390/math10111819. 

Jondeau, E. and Rockinger, M., 2006. The Copula-GARCH model of conditional dependencies: An 
international stock market application. Journal of International Money and Finance, 25(5), pp.827-
853. https://doi.org/10.1016/j.jimonfin.2006.04.007. 

https://cran.r-project.org/web/packages/rmgarch/


Dynamic Conditional Correlations and Risk Spread between International Financial Markets  

Romanian Journal of Economic Forecasting – 28(1) 2025 21 

Karfakis, C. and  Panagiotidis, T. 2015. The effects of global monetary policy and Greek debt crisis on the 
dynamic conditional correlations of currency markets. Empirica, 42(4), pp.795-811. 
https://doi.org/10.1007/s10663-014-9277-8. 

Kim, B.H., Kim, H. and Lee, B.S. 2015. Spillover effects of the US financial crisis on financial markets in 
emerging Asian countries. International Review of Economics & Finance, 39, pp.192-210. 
https://doi.org/10.1016/j.iref.2015.04.005. 

Kocaarslan, B., Sari, R., Gormus, A. and Soytas, U. 2017. Dynamic correlations between BRIC and U.S. stock 
markets: The asymmetric impact of volatility expectations in oil, gold and financial markets. Journal 
of Commodity Markets, 7, pp.41-56. https://doi.org/10.1016/j.jcomm.2017.08.001. 

Korkmaz S., Goksuluk D. and Zararsiz G. 2014. MVN: An R Package for Assessing Multivariate Normality. 
The R Journal, 6(2):151-162. https://doi.org/10.32614/RJ-2014-031. 

Lanne, M. and Saikkonen, P. 2007. A Multivariate Generalized Orthogonal Factor GARCH Model. Journal of 
Business & Economic Statistics, 25(1), pp.61-75. https://doi.org/10.1198/073500106000000404. 

Learned-Miller, A.G. and Fisher III, J.W. 2003. ICA Using Spacings Estimates of Entropy, Journal of Machine 
Learning Research, 4, pp.1271-1295. 10.1162/jmlr.2003.4.7-8.1271. 

Mardia, K. V. 1970. Measures of multivariate skewnees and kurtosis with applications. Biometrika, 57(3), 
pp.519-530. https://doi.org/10.1093/biomet/57.3.519. 

Mardia, K. V. 1974. Applications of some measures of multivariate skewness and kurtosis for testing normality 
and robustness studies. Sankhyā: The Indian Journal of Statistics, Series B, 36, pp.115-128. 
https://doi.org/10.1093/biomet/57.3.519. 

Maghyereh, A., Abdoh, H. and Wątorek, M. 2022. The impact of COVID-19 pandemic on the dynamic 
correlations between gold and U.S. equities: evidence from multifractal cross-correlation analysis. 
Quality & Quantity, June, pp.1-15. https://doi.org/10.1007/s11135-022-01404-x. 

Messaoud, S.B. and Aloui, C. 2015. Measuring Risk of Portfolio: GARCH-Copula Model. Journal of Economic 
Integration, 30(1), pp.172-205. https://doi.org/10.11130/jei.2015.30.1.172. 

Mori, T. F., Szekely, G. J. and Rizzo, M. L. 2021. On energy tests of normality. Journal of Statistical Planning 
and Inference, 213, pp.1-15. https://doi.org/10.1016/j.jspi.2020.11.001. 

Naoui, K., Liouane, N. and Brahim, S. 2010. A Dynamic Conditional Correlation Analysis of Financial 
Contagion: The Case of the Subprime Credit Crisis. International Journal of Economics and 
Finance, 2(3), pp.85-96. https://doi.org/10.5539/ijef.v2n3p85.  

Nasri, B.R. and Rémillard, B.N. 2019. Copula-based dynamic models for multivariate time series. Journal of 
Multivariate Analysis, 172, pp.107-121. https://doi.org/10.1016/j.jmva.2019.03.002. 

Patton, A.J. 2006. Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 
pp.527-556. https://doi.org/10.1111/j.1468-2354.2006.00387.x. 

Perlin, M. 2021. yfR: Downloads and Organizes Financial Data from Yahoo Finance. R package version 0.0.1. 
Available at: <https://github.com/msperlin/yfR. https://doi.org/10.32614/CRAN.package.yfR> 
[Accessed May 2024]. 

Phillips, P.C.B., Wu, Y. and Yu, J. 2011. Explosive behavior in the 1990s NASDAQ: When did exuberance 
escalate asset values?. International Economic Review, 52(1), pp.201-226. 
https://doi.org/10.1111/j.1468-2354.2010.00625.x. 

Phillips, P.C.B., Shi, S. and Yu, J. 2015a. Testing for multiple bubbles: Historical episodes of exuberance and 
collapse in the S&P 500. International Economic Review, 56(4), pp.1043-1078. 
https://doi.org/10.1111/iere.12132. 

Phillips, P.C.B., Shi, S. and Yu, J. 2015b. Testing for multiple bubbles: Limit theory of real-time detectors. 
International Economic Review, 56(4), pp.1079-1134. https://doi.org/10.1111/iere.12131. 

Rizzo, M. L. and Szekely, G. J. 2016. Energy Distance. WIREs Computational Statistics 8(1), pp.27-38. 
https://doi.org/10.1002/wics.1375. 

Sabkha, S. and de Peretti, C. 2018. On the performances of Dynamic Conditional Correlation models in the 
Sovereign CDS market and the corresponding bond market. [online] Available at: 
<https://hal.archives-ouvertes.fr/hal-01710398/document> [Accessed May 2024]. 
https://doi.org/10.1142/9781786349507_0008. 



DIMA, ALBU, DIMA, IOAN, SARAOLU IONAŞCUŢI & SIMINICA 

 Institute for Economic Forecasting 22 

Song, W., Park, S.Y. and  Ryu, D. 2018. Dynamic conditional relationships between developed and emerging 
markets. Physica A: Statistical Mechanics and its Applications, 507, pp.534-543. 
https://doi.org/10.1016/j.physa.2018.05.007. 

Syllignakis, M.N. and Kouretas, G.P. 2011. Dynamic correlation analysis of financial contagion: Evidence from 
the Central and Eastern European markets. International Review of Economics & Finance, 20(4), 
pp.717-732. https://doi.org/10.1016/j.iref.2011.01.006. 

Szekely, G. J. and Rizzo, M. L. 2005. A New Test for Multivariate Normality. Journal of Multivariate Analysis, 
93(1), pp.58-80. https://doi.org/10.1016/j.jmva.2003.12.002. 

Szekely, G. J. and Rizzo, M. L. 2013. Energy statistics:A class of statistics based on distances. Journal of 
Statistical Planning and Inference, 143(8), pp.1249-1272. 
https://doi.org/10.1016/j.jspi.2013.03.018. 

Szekely, G. J. and Rizzo, M. L. 2017. The Energy of Data. The Annual Review of Statistics and Its Application, 
4, pp.447-79. https://doi.org/10.1146/annurev-statistics-060116-054026. 

Tantipaiboowong, A., Hongsakulvasu, N. and Saijai, W. 2021. Empirical Evidence of Dynamic Conditional 
Correlation Between Asian Stock Markets and US Stock Indexes During COVID-19 Pandemic. 
Journal of Asian Finance, Economics and Business, 8(9), pp.143–154. 
https://doi.org/10.13106/jafeb.2021.vol8.no9.0143. 

van der Weide, R. 2002. Go-garch: a multivariate generalized orthogonal garch model. Journal of Applied 
Econometrics, 17(5), pp.549-564. https://doi.org/10.1002/jae.688. 

Vasilopoulos, K., Pavlidis, E., Spavound, S. and Martínez-García E. 2020a. exuber:Testing and Simulating 
Explosive Periods. R package version 0.4.2.. Available at: <https://CRAN.R-
project.org/package=exuber. https://doi.org/10.32614/CRAN.package.exuber> [Accessed May 
2024]. 

Vasilopoulos, K., Pavlidis, E. and Martínez-García E. 2020b. exuber: Recursive Right-Tailed Unit Root Testing 
with R. Federal Reserve Bank of Dallas/ Globalization Institute Working Paper 383, May. Available 
at: <https://kvasilopoulos.com/files/exuber-fedwp.pdf. https://doi.org/10.24149/gwp383> [Accessed 
May 2024]. 

Yamai, Y. and Yoshiba, T. 2002. Comparative Analyses of Expected Shortfall and Value-at-Risk (3): Their 
Validity under Market Stress. Monetary and Economic Studies, Institute for Monetary and Economic 
Studies, Bank of Japan, 20(3), pp.181-237. 

 




