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Abstract 
The impact of corporate activities on air pollution is a crucial aspect of ESG evaluation. In the 
digital era, where firms increasingly adopt artificial intelligence (AI) technology to drive production 
transformation, a nuanced understanding of the relationship between AI and air pollution is 
essential for accurately assessing corporate ESG performance. This study uses panel data from 
256 Chinese cities between 2003 and 2020 to examine the impact of AI development on air 
pollution. We find that AI development, measured by AI patents, increases PM2.5 emissions. This 
conclusion remains robust across a series of tests, including alternative measurements of the 
independent variable, exclusion of policy interference, removal of special samples, and 
addressing endogeneity concerns with instrumental variables. Heterogeneity analysis reveals that 
utility model AI patents primarily drive the increase in air pollution, with the impact of AI 
development on air pollution levels being more pronounced in small cities, non-core cities, and 
cities with weaker air pollution control efforts. Regarding underlying mechanisms, AI development 
exacerbates air pollution through increased energy consumption and expanded industrial output. 
Our study underscores the necessity of including AI-driven air pollution externalities in assessing 
corporate ESG performance. 
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1. Introduction 

How to manage the environmental impacts of business operations is an important aspect of ESG 
(Environmental, Social, Governance) performance (Porter and Van der Linde, 1995; Kolk and 
Van Tulder, 2010; Fahimnia, Sarkis and Davarzani, 2015). How firms use resources and energy, 
as well as their emissions management, is closely related to environmental quality (Stavins, 2003; 
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Guest, 2010; Fahimnia, Sarkis and Davarzani, 2015). Air pollution, as a typical representative of 
environmental pollution, has significant negative externalities at the individual, enterprise, and 
macroeconomic levels. According to the Global Burden of Disease Report (Murray et al., 2020), 
around 6.67 million deaths globally were attributed to air pollution in 2019. It is estimated that by 
2060, air pollution will result in an annual economic burden of $2.6 trillion, representing around 
1% of the global GDP (Lanzi and Rob Dellink, 2019). Studies have confirmed that air pollution 
harms individuals’ medical expenditures, health conditions, mortality, employment, and labor 
productivity (Chay and Greenstone, 2003; Graff Zivin and Neidell, 2012; Deryugina et al., 2019; 
Qin et al., 2024). For enterprises, air pollution can have significant negative impacts on human 
capital, production efficiency, and corporate performance (He, Liu and Salvo, 2019; Zhang et al., 
2019; Xue, Zhang and Zhao, 2021). These negative effects pose challenges to macroeconomic 
development, such as regional inequality, poverty, and economic policy uncertainty (Greenstone 
et al., 2021; Heblich, Trew and Zylberberg, 2021; Su et al., 2024b). Understanding the causes of 
air pollution and implementing effective controls are a crucial part of improving ESG performance 
and sustainable business capabilities (Zhao et al., 2024). 

As a representative technology of the digital economy era, AI has greatly driven social and 
economic transformation (Agrawal, Gans and Goldfarb, 2019). Existing research focuses on the 
impacts of AI on employment, economic growth, corporate development, and so on (Agrawal, 
Gans and Goldfarb, 2019; Ruiz-Real et al., 2021), but overlooks its effects on air pollution. The 
relationship between technological advancement and environmental pollution is theoretically 
ambiguous. On the one hand, technological progress helps optimize production methods and 
reduce energy consumption per unit, thereby lowering environmental pollution (Newell, Jaffe and 
Stavins, 2010; Acemoglu et al., 2012). On the other hand, technological development can also 
increase energy consumption and promote the expansion of production scales, which are often 
direct causes of rising environmental pollution (Dinda, 2004). The United Nations Environment 
Programme (UNEP) expresses concern about the environmental impact of AI, suggesting that AI 
could have significant negative effects on the environment through the construction of data 
centers, the generation of electronic waste, and the energy consumption required for power 
generation5 . Understanding the relationship between AI and air pollution is not only beneficial for 
helping businesses enhance their ESG performance in the digital economy era, but also an 
important aspect of understanding the socio-economic benefits of AI. However, research on the 
relationship between AI development and air pollution still remains scant. 

This paper empirically investigates the impact of AI development on air pollution for the first time. 
We identify AI patents in the Chinese patent database based on the “Key Digital Technology 
Patent Classification System (2023)” released by the China National Intellectual Property 
Administration, and then annually aggregate these AI patents at the city level to measure AI 
development of the cities. Using panel data from 256 Chinese cities from 2003 to 2020, we employ 
a two-way fixed effects model to explore the relationship between AI development and air 
pollution. We find that AI development increases PM2.5 emissions at the city level. This conclusion 
remains valid when the dependent variable is replaced with PM10, NO2, and the Air Quality Index 
(AQI). Our finding is robust to alternative measurements of the independent variable, exclusion 
of policy interference, removal of special samples, addressing endogeneity concerns with 
instrumental variables, and other checks. The results exhibit heterogeneity across different types 
of patents and cities. Specifically, utility model AI patents have a more significant impact on air 
pollution; the effect of AI on air pollution is more pronounced in small cities, non-core cities, and 
cities with weaker air pollution control efforts. We also explore the mechanisms through which AI 
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development affects air pollution. Our findings indicate that it is mainly due to increased energy 
consumption and expanded industrial output. 

This study contributes to the literature in several ways. First, it enriches the literature on the 
economic impacts of AI development. While a body of studies have focused on the positive 
economic effects of AI, such as enhancing production efficiency, driving innovation, and improving 
customer experience (Agrawal, Gans and Goldfarb, 2019; Ruiz-Real et al., 2021), less attention 
has been paid to its negative impacts, primarily concerning its effects on employment. This paper 
documents another negative effect of AI: increasing air pollution levels. This insight can help firms 
utilizing AI technologies adjust their ESG strategies and foster a more comprehensive 
understanding of the socio-economic impacts of AI. 

Second, this paper enriches the literature on the relationship between technological progress and 
environmental pollution. Although technological progress aids in enhancing production efficiency, 
its relationship with the environment remains inconclusive, posing challenges for corporate ESG 
management. On the one hand, technological advancements can reduce pollution by promoting 
production efficiency; on the other hand, they can increase pollution by expanding production 
scale, reflecting the double-edged characteristic of technological progress (Grossman and 
Krueger, 1995; Clark, 2007; Aghion et al., 2016). By focusing on the relationship between AI, a 
novel technology in the digital era, and air pollution, this paper provides new empirical evidence 
for the ongoing debate. 

Third, this study contributes to research on the causes of air pollution. Tackling air pollution is a 
critical issue in the digital era. Incorporating the impact of corporate activities on air pollution into 
the ESG evaluation framework is also imperative. Existing studies primarily focus on the role of 
digital technologies in pollution control (Wan and Shi, 2022; Yang et al., 2024). However, there is 
little direct evidence on the effects of non-environmental digital technologies on pollution. This 
paper attempts to fill this void by analyzing the impact of AI development on air pollution at the 
city level, thus providing further ESG management insights for companies that extensively use AI 
technology. 

2.  Literature Review 

2.1 Technological Progress and Environmental Pollution 

Technological progress plays a pivotal role in shaping firms’ ESG performance (Eccles, Ioannou 
and Serafeim, 2014). However, the impact of a firm’s adoption of new technologies on the 
environment is not always straightforward. On the one hand, technological innovation often 
facilitates pollution control through improved detection, management, and production processes. 
The “Porter Hypothesis” suggests that environmental regulations can stimulate technological 
innovation, which improves both economic and environmental outcomes (Porter and Linde, 
1995). And economic policies can also play a role in promoting technological innovation to some 
extent (Su et al., 2024a). A body of studies confirm that cleaner production technologies and the 
development of the digital economy can significantly reduce firms’ pollution levels, as seen in 
sectors like manufacturing and energy (Aghion et al., 2016; Huo et al., 2022; Wan and Shi, 2022; 
Yang et al., 2024). Moreover, technology-driven environmental monitoring and data collection 
systems allow firms to better assess and respond to pollution challenges. Enhanced detection 
technologies, such as real-time emissions monitoring, enable firms to comply with stricter 
regulations and reduce their environmental footprint (Yang et al., 2024). Through such 
mechanisms, technological innovation can lower the cost of pollution control and encourage more 
sustainable business practices, aligning firms’ operational strategies with ESG objectives (Ambec 
and Lanoie, 2008). 
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However, technology can also increase environmental harm. As firms expand operations due to 
productivity gains from new technologies, pollution may rise, particularly in industries lacking 
stringent environmental regulations (Copeland and Taylor, 2004). For example, the 
industrialization of emerging economies demonstrates how technological progress can drive 
economic growth while simultaneously increasing emissions (Grossman and Krueger, 1995; 
Clark, 2007). Furthermore, the Jevons paradox posits that increased efficiency in resource use, 
driven by technological improvements, can lead to higher overall resource consumption rather 
than reductions (Alcott, 2005). Moreover, heightened competition fueled by technological 
advances can exacerbate these effects. Firms, in their pursuit of competitive advantage, may 
prioritize short-term gains in productivity at the expense of environmental sustainability, leading 
to an aggregate increase in emissions (Antweiler, Copeland and Taylor, 2001). 

In summary, while technological progress holds the potential to reduce environmental pollution 
by improving the efficiency of production processes and enhancing firms’ ability to monitor their 
environmental impact, it also introduces risks. The expansion of production capacity and the 
intensification of market competition can counterbalance these gains, potentially leading to higher 
pollution levels (Ambec and Lanoie, 2008; Kolk and Van Tulder, 2010; Acemoglu et al., 2012). 
The net environmental impact of technological advancements, therefore, depends on a variety of 
factors, including the scale of production, regulatory frameworks, and firms’ strategic responses 
to technological changes. In the era of the digital economy, the emergence of many digital 
technologies has brought unprecedented innovations to corporate production methods and 
pollution control approaches, further complicating the relationship between technological 
progress and environmental pollution. Therefore, stronger and robust empirical evidence is 
needed to examine this relationship. 

2.2 AI development and air pollution 

The causes of air pollution are not only related to physical and chemical factors but are also 
closely linked to human political and economic activities (Xu and Lin, 2016). Relevant studies 
have found that meteorological elements such as wind speed and direction (Fang, Wang and Xu, 
2016), air temperature and pressure (Tunno et al., 2016), as well as environmental factors like 
altitude, terrain, and vegetation coverage, all have significant impacts on air pollution (Hao and 
Liu, 2016). Liu et al. (2020) even contend that natural factors dominate over any socioeconomic 
factors. From the perspective of human activities, industrial emissions from the combustion of 
fossil fuels, population density, traffic intensity, and agricultural activities also play important roles 
in air pollution (Duranton and Turner, 2011; Graff Zivin and Neidell, 2012; Wang et al., 2017a; 
Chen, Oliva and Zhang, 2022). Cheng, Li and Liu (2017) found that a high-proportion of secondary 
industry, a coal-dominated energy structure and increasing traffic intensity all exacerbate air 
pollution. 

AI, as a defining technology of the digital era, significantly transforms various economic sectors. 
AI’s positive contributions have been particularly noted in sectors like healthcare, manufacturing, 
and logistics, where automation and machine learning algorithms have led to greater efficiency 
and lower operational costs (Agrawal, Gans and Goldfarb, 2022). Moreover, AI has shown the 
potential to drive innovation by unlocking new business models and facilitating more personalized 
services, which in turn fosters economic growth (Cockburn, Henderson and Stern, 2018). 
However, the literature also underlines AI’s negative externalities, most notably its impact on 
employment (West, 2018). Acemoglu et al. (2022) use establishment-level data on the near 
universe of online vacancies in the US and find that those AI-exposed establishments reduce 
hiring in non-AI positions. Mindell and Reynolds (2023) highlight that automation technologies, 
including AI, have contributed to job polarization, reducing employment in routine-based 
occupations while increasing demand for high-skilled workers. Furthermore, the development of 
AI technology will increase the sources of air pollution. AI development imposes higher demands 
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on digital infrastructure (Peng, 2013), which in turn increases energy consumption (Wang and 
Ding, 2023), thereby intensifying air pollution. 

In addition to its economic and employment effects, some research start exploring AI’s potential 
in addressing environmental issues, particularly air pollution. These studies emphasize AI’s role 
in improving pollution forecasting and monitoring. For instance, AI-driven models have been 
developed to predict pollution levels based on real-time data, enabling more accurate and timely 
interventions (Masood and Ahmad, 2021; Sarkar et al., 2022). These predictive tools help 
policymakers and businesses anticipate pollution spikes and take preventive measures, reducing 
harmful emissions (Masood and Ahmad, 2021). And the AI service trade can significantly enhance 
urban energy efficiency (Huo et al., 2024). However, there is limited understanding of how AI 
technologies not directly aimed at pollution control—such as those used in e-commerce, finance, 
or transportation—affect air quality. For instance, AI-driven increases in industrial activity or 
logistics optimization could potentially lead to increased energy consumption and emissions, 
raising concerns about the unintended environmental impacts of widespread AI adoption (Peter, 
2022). 

In conclusion, while there is robust evidence that AI can play a critical role in improving pollution 
monitoring and forecasting, the environmental consequences of other AI applications are less 
clear. These less-studied areas highlight a gap in the literature, where AI’s broader environmental 
footprint remains underexplored. Further research is necessary to assess how AI technologies, 
most of which are not specifically targeted at environmental outcomes, affect air pollution. 
Accurately understanding this relationship is essential for companies to enhance their ESG 
performance in the digital era. 

3.  Data and Variables 

3.1 Data 

This study measures city-level AI development using patent data. The patent data is sourced from 
the China National Intellectual Property Administration, which has published detailed application 
information for all patents since 1985, including application publication numbers, publication 
dates, applicants, summaries, and so on. The data on AI companies comes from the Tianyancha 
database, which contains information on over 1180 million registered companies in China, 
including company names, founding dates, registered capital, business scopes, and so on. Data 
on pollutants such as PM2.5, PM10, and NO2 is sourced from the ChinaHighAirPollutants (CHAP) 
database (Wei et al., 2023), which provides several long-term, full-coverage, high-resolution, and 
high-quality datasets of ground-level air pollutants in China. Nighttime light data is obtained from 
the Harvard Dataverse (Wu et al., 2021), which offers an enhanced time-series dataset similar to 
DMSP-OLS (1992-2023) by integrating DMSP-OLS and SNPP-VIIRS data. Weather data, such 
as precipitation, sunlight hours, and humidity, is sourced from the Global Surface Summary of the 
Day (GSOD), derived from the Integrated Surface Hourly (ISH) dataset, which provides 
meteorological data from over 9,000 stations since 1973. Data on control variables, such as 
population and industrial structure, is obtained from the National Bureau of Statistics’ city 
statistical yearbook. Electricity consumption data comes from Chen et al. (2022), providing global 
electricity consumption raster data at a 1km x 1km resolution from 1992 to 2019. AQI data is 
sourced from the China National Environmental Monitoring Center, which provides real-time air 
quality data from over 2,000 monitoring stations since 2014. For weather or environmental 
observation station data, we first interpolate the station data into gridded data using the Inverse 
Distance Weighting (IDW) method, and then calculate the averages or sums to obtain variables 
at the city-year level. We ultimately construct a panel dataset of 256 Chinese cities spanning from 
2003 to 2020. 
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3. 2 Measurement of variables 

The independent variable in this study is the city-level AI development. We measure this variable 
by the total number of annual AI patent applications in each city (AIpatent). AI patents are selected 
based on the “Key Digital Technology Patent Classification System (2023)” released by the China 
National Intellectual Property Administration. In the robustness analysis, we use the number of AI 
enterprises in each city (AIenterprise) from the Tianyancha database as a proxy variable for AI 

development. A firm is identified as an AI firm if its business scope includes keywords related to 
AI, such as chips, image recognition, computer vision, voice recognition, and sensors. 

The dependent variable in this study is air pollution. We measure this variable using the annual 
PM2.5 emissions in each city (PM2.5). The original data comes from 1km x 1km raster data in the 

CHAP database, which is processed at the city level based on administrative boundaries. In the 
robustness analysis, we use PM10, NO2, and the Air Quality Index (AQI) as the dependent 
variables. 

To reduce omitted variable bias, we control for regional, industrial, and weather-related covariates 
in the regression (Shen and Zhang, 2024). The regional covariates include Nightlight, Population, 
and Govern_interv. Nightlight is the average nightlight intensity, controlling for economic 
development. Given the strong correlation between nightlight intensity and traditional indicators 
such as GDP per capita, it has become a commonly used proxy variable for assessing local 
economic levels (Chor and Li, 2024). Zhong and Jiang (2021) reveal that socioeconomic factors 
can explain over 40% of the variance in PM2.5 emissions. Population indicates the registered 
population. A larger population size implies greater urban transport demand, which in turn 
significantly impacts actual air pollution emissions (Duranton and Turner, 2011). Govern_interv 

denotes government intervention, which is measured by the ratio of general fiscal expenditures 
to regional GDP (Shen and Zhang, 2024). It reflects the extent of government management and 
regulation of economic activities, including the intensity of environmental policy implementation. 
The industrial covariates include Firstind_ratio and Secondind_ratio. These are represented by 

the proportion of value added by the primary industry and the secondary industry in GDP, 
respectively, to reflect the industrial structure. The proportion of the secondary industry is usually 
associated with industrial emissions, which are a major source of air pollution. For weather-related 
data, we collect Temperature, Humidity, Air_pressure, Sunlight_hours, and Precipitation to control 

for local climate conditions (Chang et al., 2019). According to Zivin and Neidell (2018), potential 
confounding caused by weather conditions may introduce bias in the results, as the 
aforementioned meteorological factors directly affect the formation, dispersion, and deposition of 
air pollutants. For temperature, relative humidity, and air pressure, we calculate the annual mean. 
For precipitation and sunshine hours, we calculate the total annual precipitation and total annual 
sunshine hours. In the empirical analysis, we apply a logarithmic transformation to non-negative 
variables. Appendix A reports the descriptive statistics. 

4.  Identification 
This study aims to explore the impact of AI development on air pollution using city-level panel 
data. The identification model is as follows: 

𝐴𝑖𝑟𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛼 + 𝛽𝐴𝐼𝑖𝑡 + ∑ 𝑋𝑖𝑡 + 𝛾𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡            （1） 

Where i represents the city and t represents the year. 𝐴𝑖𝑟𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡  denotes air pollution, 

measured by PM2.5 emission in the baseline regression, and PM10, NO2, and AQI are used as 
substitutes in the robustness analysis. 𝐴𝐼𝑖𝑡 indicates the level of AI development in the city, 
represented by the number of AI patent applications (AIpatent) in the baseline regression, and by 
the number of AI enterprises (AIenterprise) in the robustness analysis. 𝑋𝑖𝑡  represents control 
variables, including Nightlight, Population, Govern_interv, Firstind_ratio, Secondind_ratio, 
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Temperature, Humidity, Air_pressure, Sunlight_hours, and Precipitation. 𝛾𝑖  captures city fixed 

effects to control for the impact of time-invariant city characteristics on pollution. 𝛿𝑡 indicates year-

fixed effects to account for uniform shocks that change over time affecting pollution. 𝜀𝑖𝑡 denotes 

the random error term. 𝛽 is the coefficient of interest, which captures the elasticity of air pollution 

for AI development   

5.  Results 

5.1 Baseline results 

Table 1 reports the results of the baseline regression. Columns (1) to (3) sequentially add regional 
control variables, industrial control variables, and weather-related control variables.  

Table 1. Baseline regression results 

Variable 
(1) (2) (3) 

PM2.5 PM2.5 PM2.5 

AIpatent 
0.0025** 0.0033*** 0.0036*** 

(0.0013) (0.0012) (0.0012) 

Nightlight 
-0.0387*** -0.0368*** -0.0361*** 

(0.0024) (0.0025) (0.0025) 

Population 
-0.0466*** -0.0269 -0.0281* 

(0.0176) (0.0164) (0.0166) 

Govern_interv 
0.0495** 0.0273 0.0191 

(0.0207) (0.0207) (0.0195) 

Firstind_ratio 
 0.0651*** 0.0631*** 

 (0.0061) (0.0061) 

Secondind_ratio 
 0.0392*** 0.0407*** 

 (0.0099) (0.0099) 

Temperature 
  -0.0005 

  (0.0036) 

Humidity 
  -0.0523 

  (0.0351) 

Air_pressure 
  1.1864*** 

  (0.4363) 

Sunlight_hours 
  0.0765*** 

  (0.0145) 

Precipitation 
  -0.0608*** 

  (0.0075) 

Constant 
4.0443*** 3.6301*** -4.4547 

(0.1045) (0.1117) (2.9826) 

City FE Yes Yes Yes 

Year FE Yes Yes Yes 

Observations 4869 4869 4869 

Adj. R2 0.9749 0.9758 0.9770 

Notes: The robust standard errors are reported in parentheses. *, **, and *** denote significance at the 
10%, 5%, and 1% levels, respectively. 
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The results show that the coefficients of AIpatent are significantly positive at least at the 5% level 
across all models. According to column (3), the development of AI contributes to worsening air 
pollution. Specifically, a 1% increase in AI patents leads to a 0.0036% increase in PM2.5 pollution 
emissions. The findings indicate that AI development has a significant negative impact on 
environmental quality, highlighting the double-edged nature of technological progress. This 
suggests that, while AI boosts production efficiency and economic growth in the digital era, it likely 
does so at the expense of worsening environmental pollution. 

5.2 Robustness checks 

5.2.1 Replacing the dependent variable 

In the baseline regression, we primarily examine the impact of AI development on PM2.5. To 
investigate whether AI development similarly affects other pollutants, we replace the dependent 
variable with PM10 and NO2, as shown in Table 2. We observe that AI also increases PM10 and 
NO2 emissions. More broadly, we replace the dependent variable with the Air Quality Index (AQI) 
as a comprehensive measure of air pollution. The results, shown in column (3), indicate that AI 
development raises overall air pollution levels. These results indicate that the impact of AI on air 
pollution is robust, and the baseline regression findings are not driven solely by the specificity of 
PM2.5. 

Table 2. Robustness test results with replacing the dependent variable 

Variable 
(1) (2) (3) 

PM10 NO2 AQI 

AIpatent 
0.0020* 0.0069*** 0.0085** 

(0.0011) (0.0019) (0.0040) 

Constant 
-0.8881 -8.5365** -2.5559 

(2.5898) (3.4535) (4.1347) 

Controls Yes Yes Yes 

City FE Yes Yes Yes 

Year FE Yes Yes Yes 

Observations 4869 3664 2030 

Adj. R2 0.9811 0.9628 0.9549 

Notes: Limited by data availability, NO2 data starts from 2008, and AQI data starts from 2014. The 
robust standard errors are reported in parentheses. *, **, and *** denote significance at the 10%, 5%, 
and 1% levels, respectively. 

5.2.2 Replacing the independent variable 

To ensure that our findings are not influenced by a specific classification standard of AI patents, 
we consider another aggregation method to measure the independent variable. Unlike the 
baseline regression, which uses patent data based on primary classification numbers, we 
substitute the independent variable with patent data aggregated by full classification numbers 
(AIpatent_divide). According to the “Key Digital Technology Patent Classification System (2023)”, 

the primary classification approach focuses on the main use of the patent, whereas the full 
classification numbers encompass all potential technical branches involved in the patent. This 
means that primary classification tends to represent the core innovation direction of the 
technology, while the full classification better reflects cross-disciplinary applications of the patent. 
Column (1) of Table 3 shows that the coefficient of AIpatent_divide on PM2.5 is 0.0035, similar to 
the coefficient of AIpatent in the baseline regression, and is statistically significant at the 1% level. 
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Table 3. Robustness test results with replacing the independent variable 

Variable 
(1) (2) 

PM2.5 PM2.5 

AIpatent_divide 
0.0035***  

(0.0012)  

AIenterprise 
 0.0113*** 

 (0.0030) 

Constant 
-4.0414 -4.3634* 

(2.9443) (2.5997) 

Controls Yes Yes 

City FE Yes Yes 

Year FE Yes Yes 

Observations 4955 5117 

Adj. R2 0.9767 0.9764 
 

To avoid relying solely on patent data as the only measurement indicator, we select the number 
of AI companies (AIenterprise) as an alternative proxy for AI development. Compared to patent 

counts, the number of AI companies more directly reflects actual AI market presence, providing 
a supplementary perspective for analysis. Column (2) of Table 3 shows that AIenterprise is also 
strongly positive at the 1% level. The results indicate that the baseline regression findings remain 
robust even after replacing the measurements for the independent variable. 

5.2.3 Other robustness checks 

To enhance the validity of the conclusions, we also conducted the following robustness tests. 
First, given the potential regional systematic differences and the interference of provincial 
common factors, we further include region-year fixed effects and province-year fixed effects (see 
Appendix B1). Second, the clustering level in the baseline regression model is redefined at the 
provincial level. We find that the choice of standard errors does not affect the conclusions of this 
study (see Appendix B2). Third, considering the possible differential impacts due to special 
samples, we exclude certain samples for robust estimation (see Appendix B3). Fourth, adjusting 
the sample period as a robustness check helps eliminate the influence of external shocks or policy 
interventions in specific years on the estimated results (see Appendix B4). Fifth, we include four 
environment-related policies and two AI-related policies as control variables in the model to 
mitigate endogeneity (see Appendix B5). 

5.3 Endogeneity analysis 

The impact of AI applications on air pollution may present endogeneity issues. First, cities with 
higher levels of air pollution often have relatively insufficient infrastructure and environmental 
management capabilities. These cities may rely more on technological advancements like AI to 
optimize resource management, monitor pollution, and enhance the efficiency of environmental 
governance(Granell et al., 2016; Toetzke, Probst and Feuerriegel, 2023). Consequently, there 
may exist a reverse causality between air pollution levels and AI development. Second, there are 
likely omitted variables that simultaneously influence the level of AI application and air pollution. 
To address these issues, this study uses the instrumental variable (IV) approach to eliminate bias 
arising from endogeneity. Specifically, the two-stage least squares (2SLS) method is employed 
to examine the causal relationship between AI application and air pollution.  

Following the approach of Fisman and Svensson (2007), we use the average AI patent 
applications from other cities in the same province, excluding the focal city, as an instrumental 
variable (other_city_mean_AI). First, cities within the same province, due to their geographical 
proximity and administrative division, often share similarities in terms of policy environment, 
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economic development levels, and technological infrastructure. This integration makes the trends 
and stages of AI development in cities within the same province typically more consistent. As a 
result, the AI development level of other cities in the province can serve as an effective indicator 
influencing the AI development of the target city. Additionally, there may be spillover effects of 
technology and knowledge between cities within the province, especially in high-tech fields such 
as AI, where these effects are more pronounced (Tang, Qiu and Dou, 2022). Therefore, the level 
of AI application in cities within the same province satisfies the relevance requirements for the 
instrumental variable. Second, after excluding the target city, the average number of AI patent 
applications in other cities within the province may be less influenced by factors from the target 
city. The average level of AI applications in other cities in the same province, after excluding the 
focal city, exerts minimal influence on AI development in that particular city. Hence, this 
instrumental variable meets the two critical conditions of relevance and exogeneity. The results 
of the instrumental variable are presented in Table 4. 

Column (1) of Table 4 shows the results of the first stage, where the instrumental variable’s 
coefficient on AIpatent is 0.4083, and it is significant at the 1% level, thereby meeting the 
relevance condition of the instrumental variable. The LM statistic for the underidentification test is 
131.807. It rejects the null hypothesis at the 1% level, indicating that the instrumental variable is 
identifiable. The Kleibergen-Paap rk Wald F statistic is 133.840, significantly higher than the 10% 
critical value of 16.38, which rules out concerns about weak instruments. Column (2) of Table 4 
shows the results of the second stage, where the coefficient of AIpatent on PM2.5 is 0.0123, which 
is significant at the 1% level. This finding indicates that AI patents exacerbate air pollution remains 
valid even after addressing endogeneity. 

Table 4. Endogeneity analysis results 

Variable 
(1) (2) 

AIpatent PM2.5 

other_city_mean_AI 
0.4083***  

(0.0353)  

AIpatent 
 0.0123** 

 (0.0059) 

Controls Yes Yes 

City FE Yes Yes 

Year FE Yes Yes 

Observations 4797 4797 

Adj. R2 0.9207 0.1338 

Kleibergen-Paap rk LM  131.807 

Kleibergen-Paap rk Wald F statistic  133.840 

Notes: The robust standard errors are reported in parentheses. *, **, and *** denote significance at the 
10%, 5%, and 1% levels, respectively. 

5.4 Heterogeneity analysis 

5.4.1 Heterogeneity across patent types 

Existing studies indicate that innovative applications of AI and its concrete industrial applications 
have different impacts on the environment, particularly regarding carbon emissions (Gaur et al., 
2023). To investigate the specific effects of different types of AI development on air pollution and 
to clarify the environmental mechanisms of innovative AI versus applied AI, we conduct a 
heterogeneity analysis based on patent types. In this study, AI patents are categorized into 
invention AI patents (Innovation) and utility AI patents (Utility), representing innovative AI and 
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applied AI respectively6. The empirical results, shown in Table 5, reveal that the coefficient of 
Utility is significantly positive at the 1% level, while the coefficient of Innovation is not significant. 
This suggests that different types of AI applications have distinct impacts on air pollution.  

We explain why utility patents have a significant impact on air pollution, whereas invention patents 
do not from two perspectives. First, invention patents typically represent earlier-stage, more 
innovative technologies, which may still be in the experimental phases and not yet widely applied 
in actual production (Gross et al., 2018). Consequently, their direct impact on air pollution is 
minimal. In contrast, utility model patents generally involve more mature technologies that can be 
immediately applied. As shown by Haustein and Neuwirth (1982), such technologies tend to be 
adopted more quickly in the early stages of the technology diffusion cycle, thereby having a 
tangible effect on energy consumption. Zhou and Liu (2023) also find that higher energy 
expenditures negatively impact ESG investments, highlighting the importance of energy factors 
in achieving ESG goals. Second, in terms of application pathways, utility patents focus more on 
using existing infrastructure to enhance production efficiency and scale. Under short-term 
economic motivations, this approach is more likely to increase energy consumption, thereby 
intensifying environmental pollution. Invention innovations mostly belong to “non-immediate 
substitutes”. They may require substantial investment in technologies and infrastructure, with 
benefits that are often in the long term (Grubler, Wilson and Nemet, 2016). 

Table 5. Heterogeneity results across patent types 

Variable 
(1) (2) 

PM2.5 PM2.5 

Innovation 
0.0016  

(0.0011)  

Utility 
 0.0034*** 

 (0.0012) 

Constant 
-4.8189 -4.0713 

(3.0177) (2.9187) 

Controls Yes Yes 

City FE Yes Yes 

Year FE Yes Yes 

Observations 4645 4832 

Adj. R2 0.9772 0.9771 

Notes: The robust standard errors are reported in parentheses. *, **, and *** denote significance at the 
10%, 5%, and 1% levels, respectively. 

 

5.4.2 Heterogeneity across cities with different characteristics 

Existing literature suggests that the degree of AI application may be influenced and constrained 
by urban characteristics (Guo, Ma and Zhao, 2023; Wang and Ding, 2023). Therefore, we 
categorize the research sample based on urban characteristics, specifically city size and urban 
development level. First, regarding city size, we follow the “Notice on Adjusting the Standards for 

                                                           
6 One of the main sources of air pollution is the energy consumption, exhaust emissions, and resource usage 

during industrial manufacturing processes. Invention patents and utility patents are typically closely related 
to technological innovations and improvements in production processes. These improvements can directly 
impact pollution emissions and energy structures. In contrast, design patents primarily focus on innovations 
in product appearance and usually do not involve changes in production processes or technological 
advancements, so their impact on air pollution is minimal. 
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City Size Classification” issued in 2014 and classify cities into two categories based on their 
resident population: large cities (with populations above one million) and medium-small cities (with 
populations of one million or below). The regression results are shown in Table 6. According to 
columns (1) and (2) of Table 6, the impact of AI applications on air pollution is significant in smaller 
cities but not significant in larger cities. Second, in terms of urban development level, we refer to 
the study by Yao et al. (2022) and use two criteria: whether the per capita output meets the World 
Bank’s high-income standard and whether the administrative level is at or above the prefecture 
level. Cities are then classified as either central cities or peripheral cities. According to columns 
(3) and (4) of Table 6, the impact of AI applications on air pollution is significant in peripheral cities 
but not significant in central cities. 

Table 6. Heterogeneity results across cities with different characteristics 

Variable 

City size City status 

(1) (2) (3) (4) 

Large Small Central Peripheral 

PM2.5 PM2.5 PM2.5 PM2.5 

AIpatent 
0.0059 0.0036*** 0.0046 0.0038*** 

(0.0063) (0.0012) (0.0061) (0.0012) 

Constant 
5.6845 -4.5397 -3.0538 -3.0464 

(12.9400) (6.2817) (14.1945) (6.0879) 

Controls Yes Yes Yes Yes 

City FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Observations 629 4201 642 4188 

Adj. R2 0.9759 0.9772 0.9740 0.9775 

Notes: The robust standard errors are reported in parentheses. *, **, and *** denote significance at the 
10%, 5%, and 1% levels, respectively. 

 

The possible reasons are as follows. First, large and central cities typically have higher levels of 
economic development, along with more technical resources and policy support. These factors 
help them mitigate air pollution (Wang et al., 2017b; Luo et al., 2018). Second, smaller and 
peripheral cities tend to lag behind central cities in terms of technology adoption and infrastructure 
modernization. As a result, when these cities introduce AI technologies, they rely more heavily on 
existing energy sources (such as electricity) to boost industrial and service sectors, leading to 
increased energy consumption. Wang and Chen (2022) show that higher dependency on 
resources is associated with increased air pollution. Third, the level of government corruption in 
smaller and non-core cities may be higher (Lecuna, 2012). Ren et al. (2021) find that corruption 
leads to increased carbon emissions. Additionally, Ucar and Staer (2020) further note that high 
corruption rates can lower corporate ESG scores. 

5.4.3 Heterogeneity across cities with different air pollution control efforts 

Considering that different cities have significant differences in policy implementation and 
environmental governance, various policy contexts may influence the mechanism by which AI 
application affects air pollution. State-listed famous historical and cultural cities often receive 
higher attention and protection in terms of environmental governance and policy, due to their 
unique historical heritage and cultural value. Cities designated for atmospheric pollution 
prevention are those selected by the government to implement special pollution control measures. 
These cities receive additional policy support and financial resources from both national and local 
governments to mitigate air pollution. Therefore, a heterogeneity analysis is conducted on the 
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research sample based on two policy factors: state-listed historical and cultural cities and the 
“Blue Sky Protection Campaign”. 

First, based on the list issued by the State Council, the research sample is divided into “State-
Listed Famous Historical and Cultural Cities” and “Non-State-Listed Famous Historical and 
Cultural Cities”. Columns (1) and (2) in Table 7 show that for the group of state-listed historical 
and cultural cities, the impact of AIpatent on PM2.5 is not significant. In contrast, for the non-state-
listed group, the coefficient of AIpatent on PM2.5 is 0.0043 and is significant at the 1% level. This 
finding is consistent with expectations. While AI applications may lead to a certain increase in 
industrial activities and energy consumption, the strengthened policy regulations and 
environmental governance in these cities likely effectively counterbalance the negative 
environmental impacts brought by the expansion of AI. 

Second, based on the “Three-Year Action Plan to Win the Blue Sky Protection Campaign” issued 
by the State Council in 2018 7 , the research sample is divided into “Cities Designated for 
Atmospheric Pollution Prevention” and “Cities Not Designated for Atmospheric Pollution 
Prevention”. Results shown in columns (3) and (4) of Table 7, indicate that AI applications 
increase air pollution in cities not designated for atmospheric pollution prevention, but this is not 
the case for cities designated. The reason is that, in cities designated for atmospheric pollution 
prevention, the strict implementation of policies leads to limited pollution levels. Furthermore, the 
government reduces pollution loads through resource concentration and comprehensive 
management measures in these cities. Lu et al. (2022) find that the Blue Sky Plan not only 
significantly reduces emissions of air pollutants but also stimulates ESG investments in steel 
companies, improving their ESG performance. 

Table 7. Heterogeneity results across cities with different air pollution control 
efforts 

Variable 

State-list famous historical and cultural 
cities 

Cities designated for atmospheric 
pollution prevention 

(1) (2) (3) (4) 

State-Listed Non-State-Listed 
Cities 

Designated 
Cities Not 

Designated 

PM2.5 PM2.5 PM2.5 PM2.5 

AIpatent 
0.0010 0.0043*** 0.0027 0.0033** 

(0.0024) (0.0014) (0.0019) (0.0014) 

Constant 
-22.0041*** 0.7951 2.0619 -4.0386 

(5.5170) (3.1746) (3.5424) (3.3016) 

Controls Yes Yes Yes Yes 

City FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Observations 1567 3302 1171 3698 

Adj. R2 0.9798 0.9758 0.9769 0.9692 

                                                           
7 The Chinese government has continuously issued policies regarding atmospheric pollution prevention to 

promote sustained improvements in air quality. In 2013, the “Notice on Implementing Special Emission 
Limits for Air Pollutants” was released, followed by the “Three-Year Action Plan to Win the Blue Sky 
Protection Campaign” in 2018, and the “Action Plan for Sustained Air Quality Improvement” in 2023. In this 
study, we specifically select the 2018 document as the basis for categorization. The State Council, 2018. 
The State Council's Notice on the Issuance of the Three-Year Action Plan to Win the Battle for a Blue Sky. 
Available at: https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm. 

https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm
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Notes: The robust standard errors are reported in parentheses. *, **, and *** denote significance at the 
10%, 5%, and 1% levels, respectively. 

 

5.5 Mechanism analysis 

5.5.1 Energy Consumption Channel 

The application of artificial intelligence indirectly exacerbates air pollution by increasing energy 
consumption. The in-depth application of AI technology requires large-scale data processing and 
analytical capabilities, which significantly increases the demand for digital infrastructure (Peng, 
2013). The operation of these digital infrastructures is highly dependent on electricity (Salahuddin 
and Alam, 2015). Consequently, as AI applications deepen, electricity consumption shows a clear 
upward trend, creating a greater energy burden. With the increasing demand for electricity, the 
impact of energy consumption on air pollution becomes even more prominent, especially in a 
country like China where the power industry mainly relies on coal-fired power generation (Wang 
and Ding, 2023). China’s electricity production heavily depends on fossil fuels, particularly coal, 
which significantly increases the emission of pollutants such as sulfur dioxide (SO₂), nitrogen 

oxides (NOₓ), and particulate matter (PM2.5) (Ren et al., 2021). Therefore, although artificial 
intelligence technology brings certain efficiency improvements, its electricity demand is also 
increasing. Cong et al. (2022) find that energy consumption has a significant negative value. This 
indicates that ESG investments by Chinese companies are positive, but there has not yet been 
progress in relevant green technologies at this stage. In summary, under the current energy 
structure, AI applications lead to increased emissions of air pollutants. 

Based on the substantial electricity demand discussed above, according to Chen et al. (2022), 
this study uses electricity consumption data (Electricity_consumption), which has been log-
transformed, as a proxy variable for the energy consumption channel. Column (1) in Table 8 
examines the effect of AI applications on electricity consumption levels. As can be observed, at 
the 1% degree, the AIpatent coefficient is markedly positive, indicating that the development of 
AI indeed increases electricity consumption. This result is in line with the conclusions of Ma et al. 
(2025), Wang and Ding (2023), and Raheem et al. (2020), who reported that during the 
development of the digital economy, telecommunications software and information technology 
services consume significant amounts of electricity, further contributing to energy use and carbon 
emissions. Therefore, the application of artificial intelligence will exacerbate air pollution by 
increasing energy consumption, supporting our analysis. 

Table 8. Mechanism analysis results 

Variable 

Energy Consumption Channel Scale Expansion Channel 

(1) (2) (3) 

Electricity_consumption Value_added Industrial_output 

AIpatent 
0.0036*** 0.0112*** 0.0128*** 

(0.0009) (0.0025) (0.0045) 

Constant 
18.0196*** 14.4085*** 9.3106 

(1.8559) (5.0534) (18.7368) 

Controls Yes Yes Yes 

City FE Yes Yes Yes 

Year FE Yes Yes Yes 

Observations 4578 4869 3694 

Adj. R2 0.9986 0.9915 0.9828 

Notes: The robust standard errors are reported in parentheses. *, **, and *** denote significance at the 
10%, 5%, and 1% levels, respectively. 
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5.5.2 Scale Expansion Channel 

In the study of the impact of artificial intelligence (AI) applications on air pollution, the scale 
expansion effect serves as an important mechanism channel. The development of AI technology 
not only brings technological efficiency improvements but also drives the expansion of production 
scale. This scale expansion leads to the energy rebound effect and increased pollution emissions 
(Li and Wang, 2022). For instance, in the early stages, the deep integration of the digital economy 
with the real economy, especially the industrial sector, promotes scale expansion and increased 
energy use, thereby resulting in higher emissions (Ma et al., 2025). 

First, the widespread application of AI promotes enterprises to purchase new production facilities, 
enhance production technology levels, and expand production scale, which in turn leads to an 
energy rebound effect and increased air pollution emissions (Li and Wang, 2022). As China 
accelerates its industrialization process, the share of the secondary industry rises along with 
increased electricity consumption (Wang et al., 2017b; Yang, Wang and Ren, 2022). A larger 
scale of industrial production implies greater demand for raw materials, which also leads to more 
industrial pollutant emissions and increased pressure on the environment. Second, industrial 
scale expansion is also accompanied by more auxiliary production activities, such as logistics, 
transportation, and the expansion of raw material supply chains. These activities further increase 
energy consumption and undoubtedly contribute to greater emissions of pollutants (Shvakov and 
Petrova, 2020; Usman et al., 2021). Third, the development of the digital economy promotes the 
expansion of economic activities, which influences pollution emissions through scale effects 
(Zhou, Zhou and Wang, 2018). 

In this study, we use the log-transformed values of the secondary industry value-added 
(Value_added) and total industrial output above the designated scale (Industrial_output) from the 
National Bureau of Statistics’ City Statistical Yearbook as proxies for scale expansion. According 
to columns (2) and (3) of Table 8, the coefficients of AIpatent on Value_added and 
Industrial_output are 0.0112 and 0.0128, both significant at the 1% level. This finding verifies the 
aforementioned hypothesis that AI development indeed aggravates air pollution through the scale 
expansion effect. 

6.  Conclusions 
This study focuses on the impact of artificial intelligence (AI) development on air pollution. 
Technological progress plays a key role in corporate ESG performance (Eccles, Ioannou and 
Serafeim, 2014). However, the relationship between AI development and environmental pollution 
is theoretically ambiguous(Wang and Ding, 2023; Yang et al., 2023; Ma et al., 2025). Using panel 
data from 256 Chinese cities between 2003 and 2020, this study examines the effect of AI 
applications on air pollution. Our findings indicate that a 1% increase in AI patents leads to a 
0.36% rise in PM2.5 emissions. A series of robustness checks and instrumental variable 
regressions confirm the results, including alternative measurements of key variables, inclusion of 
high-dimensional fixed effects, exclusion of policy-related interference, and removal of specific 
samples and periods. Heterogeneity analysis shows that utility model AI patents, rather than 
invention AI patents, primarily increase air pollution. The effect of AI on air pollution is more 
pronounced in smaller cities, non-core cities, and cities with weaker air pollution control. 
Mechanism analysis indicates that AI development contributes to air pollution through higher 
energy consumption and expanded industrial output. Our findings highlight the negative 
externalities of AI development, suggesting that the impact of AI on air pollution should be 
considered when evaluating the ESG performance of firms deploying AI at scale. Firms need to 
use AI responsibly, maximizing its role in environmental protection and improving the 
effectiveness of environmental governance. In particular, industrial and heavily polluting public 
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firms that are insensitive to ESG should recognize that one effective way to reduce pollutant 
emissions is to better implement ESG practices.   
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