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Abstract 
We explore the potential impact of countries’ environmental performance (as are these proxied 
by the Environmental Performance Index) on their economic development by accounting for 
potential spatial effects modulating the interlinkages between these variables. For this purpose, 
we employ the Geographically Weighted Regression (GWR) approach for a 2023 dataset of 167 
countries and territories. We find that geographical location matters in explaining the capacity of 
a country to use its environmental performance to sustain its development path. Nonetheless, the 
associated effects appear to be non-linear and geographically heterogeneous. Other 
socioeconomic variables (such as population density, urban population and oil rents) are also 
relevant. The findings are robust for various GWR model specifications. Some policy implications 
are derived. 
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1. Introduction 

An increasing amount of literature addresses the various potential effects that environmental 
health, climate change, biodiversity preservation, or the efficiency of pro-environmental policies 
can exert on the sustainable economic development. This literature disentangles such effects at 
regional, country, and international levels.  

For instance, Xie (2023, p.7149) finds that, for the case of China, there are empirical pieces 

of evidence of the spatial spillover effect of adjacent provinces’ environmental regulation on local 
economic growth. Technological innovations may represent a non-linear transmission channel for 
the effects exercised by environmental regulations on economic growth (with a threshold for the 
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intensity of environmental regulation that, once exceeded, can turn the stimulative impact for the 
development of environmental rules into a negative one) (Chen & Hu, 2022). 

However, even at a regional level, a distinction can be drawn between direct and, respectively, 
indirect effects exercised by environmental status on growth. The last type of effects can be 
modulated by environmental protection expenditure of the local government on the ecological 
environment improvement, urbanization, technological innovations, environmental or fiscal 
decentralization, environmental knowledge or industrial structures (He, 2015; Yang, 2021; Shi et 
al., 2022; Ren et al., 2023). 

At country and international level, Benhamed (2023) reveals that climate change has direct 

and indirect spillover effects on economic growth, mainly in low- and middle-income countries 
over different time periods. Chica-Olmo (2020) employs a spatial Durbin model to investigate 
the spatial dependence between GDP and renewable energy consumption for 26 European 
countries and concludes that spatial reliance leads to a change in renewable energy consumption 
that affects the GDP of neighbouring countries. In the same case of the European Union, Ren 

(2021) finds that economic growth positively impacts CO2 emissions, while the spatial effects 
of economic growth exert negative impacts. Nonetheless, the total effects of economic growth are 
positive. Meanwhile, an important issue is the impact of environmental regulation intensity (ERI). 
Xu (2024) shows that ERI is exercising a non-linear effect on the efficiency of sustainable 
economic growth (ESEG) for the European Union countries, with a clear spatial pattern 
encompassing various cases ranging from Western Europe to Southern Europe. They also reveal 
that the ERI have a spatial spillover effect on the ESEG, with the spatial spillover effect in the 
eastern and western regions of the EU being significantly different. 

Based on this literature, this paper seeks to advance a two-fold contribution. First, it explores the 
capacity of spatial models (i.e. models for which the parameters are spatially varying) to capture 
the potential effect exercised by countries’ performance on preserving the environment and 
maintaining their economic development. Second, it provides empirical evidence for a relationship 
between environmental performance and economic development for 167 countries and territories, 
investigating the nature of such a relationship. 

The underlying argument can be summarized as follows: while most development studies reflect 
the myriad of economic dynamics’ determinants, they frequently neglect the role played by 
geographical dimension of economic activity in the generative processes of this dynamics. 
Geographical locations and physical distances between countries might be relevant in explaining 
the differences in their performance in terms of ensuring sustainable development and 
environmental protection. Consequently, a more realistic explanatory framework should include 
a geographical dimension in any explanation addressing development driving forces. 

One of the most important reasons is that various ‘neighbourhood effects’ can occur in relation to 
development processes. Neighbour countries exchange goods, services, labour force, 
technology, and knowledge. Institutional transformations and social changes can frequently arise 
in ‘regional waves’. Similarly, negative externalities related to the adverse effects of 
socioeconomic activities are not limited to a single administrative area, and spillover effects can 
occur across borders. Indeed, the existing literature provides empirical evidence that the effect of 
spatial spillover (spatial dependency) is one of the leading causes of economic growth spillover 
effects in association with the geographical position of the trade partners (Amidi et al., 2020; Amidi 
& Fagheh Majidi, 2023; Evcim & Yesilyurt, 2023). 

Hence, if there is an impact exercised by the environmental performance on development, then 
the implied transmission channels might display spatially varying features that reflect the 
locational determinants of both variables. 

In terms of methodology, we employ the ‘Geographically Weighted Regression’ class of models 
to assess the validity of this line of reasoning. Such models can incorporate potential spatial 
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effects in transmitting the impact of the explanatory variables. We find, for 167 jurisdictions, that 
location is relevant in explaining the linkage between environmental performance and 
development (although this seems to apply in a heterogeneous manner).  

The following section includes details about the methodology used. Section 3 reports the results 
and carries out a robustness analysis. Section 4 discusses the findings and suggests future 
research directions, while the last section concludes. 

2. Methodology and international data 
The Geographically Weighted Regression (GWR) model 

To account for the potential spatial variable effects exercised by the quality of environmental 
protection policies and mechanisms on economic development, we involve the framework of a 
‘Geographically Weighted Regression’ (GWR) model. The critical advantage of GWR is that it 
allows the implied relationships to be spatially varying (i.e. the coefficients in GWR are functions 
of spatial location). In addition, the GWR models are usually robust to the effects of 
multicollinearity (Fotheringham & Oshan, 2016). 

We consider the general form of such a model as: 

𝐺𝐷𝑃𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + 𝛽1(𝑢𝑖 , 𝑣𝑖)𝐸𝑃𝐼𝑖 +∑𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑋𝑘𝑖 + 𝜀𝑖    (1)

𝑚

𝑘=2

 

Here 𝐺𝐷𝑃𝑖 is a measure of economic activity output (such as real GDP) for country i, 𝐸𝑃𝐼𝑖 is a 

proxy for the environmental performance in country i and 𝑋𝑘𝑖 is an additional explanatory variable 

for country i. 𝛽0(𝑢𝑖 , 𝑣𝑖) is the intercept parameter at location i, 𝛽𝑘(𝑢𝑖 , 𝑣𝑖) is the local regression 

coefficient for the kth independent variable at the level of country i and 𝜀𝑖 is a local random error. 

Finally, (𝑢𝑖 , 𝑣𝑖) is the coordinate of country i. 

As Fotheringham (1998, p.1907) explains, the calibration of this model “assumes implicitly 
that observed data near to point i have more of an influence in the estimation … than data located 
farther from i. In essence, the equation measures the relationships inherent in the model around 
each point i.” Therefore, the estimation of the model coefficients requires a point-wise calibration 
that is made for each regression location independently. The weighted least squares method is 
used and the matrix calculation for the estimated regression coefficients could be expressed as 
(Lu et al., 2011, p.93): 

�̂�(𝑢𝑖 , 𝑣𝑖) = (𝑋
𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝑋)

−1𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝐺𝐷𝑃             (2) 

X is the matrix of the explanatory variables with a column of 1s for the intercept, 𝛽(𝑢𝑖 , 𝑣𝑖) =

(𝛽0(𝑢𝑖 , 𝑣𝑖), … , 𝛽𝑚(𝑢𝑖 , 𝑣𝑖)) is the vector of m+1 local regression coefficients, and 𝑊(𝑢𝑖 , 𝑣𝑖) is the 

diagonal matrix denoting the geographical weighting of each observed data for regression point 
i. 

The weighting scheme 𝑊(𝑢𝑖 , 𝑣𝑖) is calculated with a kernel function based on the proximities 
between regression point i and the N data points around it. In our estimates we consider three 

types of kernel functions, namely the ‘Gaussian’, the ‘tricube’ and, respectively, the ‘bi-square’ 
ones: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛:    𝑤𝑖𝑗 = 𝑒𝑥𝑝 (−
1

2
(
𝑑𝑖𝑗

𝑏
)

2

) 
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                                        𝑇𝑟𝑖𝑐𝑢𝑏𝑒: 𝑤𝑖𝑗 = 

{
 
 

 
 
(1 − (

|𝑑𝑖𝑗|

𝑏
)

3

)

3

    𝑖𝑓 |𝑑𝑖𝑗| < 𝑏 ;

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   

                  (3)  

 

𝐵𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒: 𝑤𝑖𝑗 =  

{
 
 

 
 
(1 − (

𝑑𝑖𝑗

𝑏
)

2

)

2

    𝑖𝑓 |𝑑𝑖𝑗| < 𝑏 ;

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   

 

Here 𝑤𝑖𝑗  is the j-th element of the diagonal of the matrix of geographical weights 𝑊(𝑢𝑖 , 𝑣𝑖), and 𝑑𝑖𝑗 

is the distance between observations i and j. Meanwhile, b is the bandwidth. 

The ‘Gaussian’ kernel is a continuous function of the distance between two observation points. 
The weights will be a maximum (i.e. equal to 1) for an observation at a GW model calibration point 
and will decrease according to a Gaussian or exponential curve as the distance between 
observation points increases. At the same time, the ‘bi-square’ and ‘tri-cube’ kernels are 
discontinuous, giving null weights to observations with a distance greater than b. In addition, these 
two kernels provide weights that decrease as the distance between observation points increases, 
up until the distance b (see for details Gollini et al., 2015, p.5). 

It should be noticed that an optimum bandwidth b can be found by minimising a model goodness-
of-fit diagnostic based on the ‘corrected Akaike Information Criterion’ (corrected AIC) which 
accounts for model parsimony. Unlike the standard AIC, the corrected version is a function of 
sample size (Hurvich et al., 1998). 

 

International data 

For 167 countries and territories, we select the GDP per capita, PPP (constant 2021 international 
$) ('GDP'), as the dependent variable (values corresponding to the 2023 year). The dataset 
includes developed, emerging, and frontier economies and provides a variety of cases in terms 
of development and environmental performance.  

The data are collected from the World Bank database' World Development Indicators (The World 

Bank, 2024). From the same source, we also collect some socio-demographic and natural 
resources data as control variables: population density (people per sq. km of land area 
('POPDENS'); urban population (% of the total population) ('URBAN') and oil rents (% of GDP) 
('OIL').  

The 2024 Environmental Performance Index ('EPI') (Block et al., 2024) is the primary explanatory 
variable of interest. By using 58 performance indicators across 11 issue categories, the EPI ranks 
180 countries on climate change performance, environmental health, and ecosystem vitality. Due 
to its complexity, this indicator can capture the multidimensional nature of ecological status and 
provide a granular view and a comparative perspective for differences between countries. To 
drop-out the scale effects, all the variables are transformed into their corresponding Z-scores by 
subtracting from their levels the sample means and dividing the outcomes with the sample 
standard deviation. 

Finally, we use the centroid of the largest land mass as countries’ coordinates (longitude and 
latitude). 

Figure 1 shows that the sample's absolute rank differences between GDP and EPI and their GW 
correlations display a heterogeneous spatial pattern. 
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Figure 1. Absolute rank differences and GW correlations for GDP  

per capita and EPI 

 

 



  Bogdan DIMA, Lucian ALBU & Ştefana Maria DIMA 

 Institute for Economic Forecasting 10 

 

Notes: The figure shows (a) the absolute differences between the ranks (as computed for the considered 
dataset) for GDP per capita and, respectively, the EPI. Countries not included in the dataset are 
represented in white. It also shows (b) the 'Box-car' kernel and (c) the 'Tricube' kernel geographically 
weighted (GW) correlations. These correlations were obtained using an adaptive kernel bandwidth 
equal to 44 (around 26% of the data). Such a bandwidth was selected based on the AIC corrected 
(AICc) approach. The correlation statistics are implemented by the R package 'GWmodel' (Gollini et 
al., 2015; Lu et al., 2014a; Lu et al., 2024). The map is drawn using the R package 'world map' (South, 
2011, 2023). 

 

Moreover, Figure 1 reveals that some regions, such as North America, Northern Europe or North-
West Africa, are characterized by low or medium rank differences and medium or high 
correlations. On the opposite side of the spectrum, countries from the Middle and Far East or 
Oceania are characterized by higher rank differences and lower GW correlations. Between these 
two clusters of countries, several intermediate cases are situated mainly in Europe, Central and 
South-East Africa or Central and South America. 

Globally, the geographical location matters in explaining the relationship between GDP and EPI. 
The following section explores this in the formal framework of GWR models. 

3. Results 
Main results 

Figure 2 displays the results from a pseudo stepwise procedure aiming to select the explanatory 
variables as a preliminary analytical step. This procedure is used in a forward direction and 
requires four steps: (a) the calibration of all possible GW regressions by sequentially regressing 
a single independent variable against the dependent variable; (b) the identification of the best-
performing model which produces the minimum corrected AIC; (c) the sequential introduction of 
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a variable from the remaining group of independent variables to construct new models; and (d) 
repeat the previous step till all independent variables are permanently included in the model (see 
for details Gollini et al., 2015). Ten GW regressions result from this procedure. The first 
explanatory variable permanently included is the proportion of urban population, while the second 
is the EPI index. The last variable the selection procedure considers is the rents from oil 
exploitation. Supplementary Figure 1 shows the corrected AIC values from these ten fits. These 
values continue to fall until all independent variables are included. Therefore, they can all be 
further used as potential determinants of development. 

 

Figure 2. Model view of the stepwise specification procedure and  

corrected AIC values 

 

 

Notes: An adaptive bandwidth is used to estimate the GWR models. This is equal to 53 (number of nearest 
neighbours). Also, the ‘Great Circle distance’ metric (‘orthodromic distance’) is used. In addition, a ‘bi-
square’ kernel function is considered. The procedure follows the implementation from the R package 
‘GWmodel’ (Gollini et al., 2015; Lu et al., 2014a; Lu et al., 2024). 
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Table 1. Geographically Weighted Regression and Mixed Geographically Weighted 

Regression models 

Model EPI PD  UP  OR  AIC corrected BIC Adjusted 
R2 

Global Regression 0.045*** 
(0.005) 

0.123*** 
(0.044) 

0.389***(0.
055) 

0.098** 
(0.045) 

284.044 165.935 0.693 

Basic GWR (kernel: ‘tricube') 

Geographically 
Weighted Regression     

[-0.001; 
0.067] 

[-0.694; 
0.768] 

[0.021; 
0.699] 

[-0.141; 
0.339] 

210.662 120.443 0.832 

F1 test (Leung 
2000):  
0.542 (p=0.000) 

       

F2 test (Leung 

2000):  
2.954 (p=0.000) 

       

F3 test (Leung 
2000): 
 

2.713 
(p=0.000) 

1.589 
(p=0.046) 

4.281 
(p=0.000) 

0.858 
(p=0.604) 

   

F4 test  

(Fotheringham 
2002, p. 92): 
0.439 (p=0.000) 

       

Basic GWR (kernel: ‘bi-square') 

Geographically 
Weighted Regression     

[-0.005; 
0.069] 

[-0.297; 
0.719] 

[0.045; 
0.771] 

[-0.210; 
0.339] 

209.197 120.077 0.833 

F1 test (Leung 
2000): 
0.540 (p=0.000) 

       

F2 test (Leung 

2000): 
2.810 (p=0.000) 

       

F3 test (Leung 
2000): 
 

3.099 
(p=0.000) 

1.442 
(p=0.108) 

4.142 
(p=0.000) 

1.376 
(p=0.187) 

   

F4 test 

(Fotheringham 

2002, p. 92): 
0.431 (p=0.000) 

       

Mixed GWR (kernel: ‘tricube') 

Global coefficient    0.094    

GWR variables [0.000; 
0.069] 

[-0.722; 
0.782] 

[0.005; 
0.709] 

 201.800 102.700  

Mixed GWR (kernel: ‘bi-square') 

Global coefficient  0.059  0.091    

GWR variables [0.001; 
0.069] 

 [0.036; 
0.687] 

 201.000 95.320  

***, **,*- 1%,5% and 10% significance levels. Minimal and maximal GWR coefficients in []. 

Notes: PD - Population density (people per sq. km of land area); UP - Urban population (% of total population); 
OR - Oil rents (% of GDP) 

For the F1 test, the null hypothesis is: "there is no significant difference between OLR and GWR models for 
the given data" (Leung et al., 2000, p.16). For the F2 test, the null is: "the GWR model and the OLR 
model describe the data equally well"(Leung et al., 2000, p.17). F3 is a spatial stationarity test with 
the null hypothesis that for an individual variable, the coefficients are "tested not to vary significantly 
over the region"(Leung et al., 2000, p.21). F4 is another goodness-of-fit test proposed by 



Environmental Performance and Economic Development: a Spatial Approach  

Romanian Journal of Economic Forecasting – 27(3) 2024 13 

Fotheringham (2002). An adaptive bandwidth is used to estimate the GWR models. In the case 
of the basic GWR model, this is equal to 53 (number of nearest neighbours). Also, the ‘Great Circle 
distance’ metric (‘orthodromic distance’) is used. If the ‘tricube’ kernel is used, for the basic GWR 
model, the residual sum of squares is 21.820 while for the Mixed GWR model this is 22.260. If the ‘bi-
square’ kernel is considered instead, the residual sum of squares is 21.421 while for the Mixed GWR 
model this is 23.210. All the models are implemented in the R package ‘GWmodel’ (Gollini et al., 
2015; Lu et al., 2014a; Lu et al., 2024) 

 

Based on these preliminary results, Table 1 reports the outcomes of different GWR model 
specifications. In the global regression model, the impact exercised by EPI on the GDP dependent 
variable is positive and statistically significant at 1%. The same is the case for the control 
variables. 

For the basic GWR models (with 'tricube' and 'bi-square' kernel functions), the effects associated 
with EPI (as well as the other considered explanatory variables) display a specific spatial 
heterogeneity, with estimated values ranging from close to zero to around 0.07. The median 
estimates are for both kernel functions positive (0.043 and, respectively, 0.048) and point toward 
a dominant favourable effect exercised by a better environmental performance on development. 

Nonetheless, as the F1, F2, and F4 tests show, the GWR models fit the data set better than a 
global OLS model regardless of kernel function. The F3 test shows significant spatial non-

stationarity for some but not for all influences exercised by the considered explanatory variables. 

More precisely, the impact exercised by the oil variable appears spatially stationary, while for the 
rest of the variables (including the constant), this impact is spatially non-stationary. Consequently, 
a mixed GWR model may be more appropriate for depicting the considered variables. However, 
if a ‘bi-square’ kernel function is used, the effects associated with population density also seem 
spatially stationary. 

By accounting for corrected AIC and BIC levels, the best explanatory model is a Mixed GWR with 
'bi-square' kernel functions. In such a model, the coefficients of EPI range between close to zero 
and up to 0.069. Hence, the model supports the hypothesis of a positive impact exercised by the 
quality of the environment on economic development. However, such an impact displays 
significant geographical variations. Figure 3 displays the local coefficients for EPI, as are these 
estimated based on the Mixed GWR model with 'bi-square' kernel function. Higher levels of these 
coefficients appear for countries located in North and Central America, the North of Europe and 
the South-East of Africa. Correlatively, lower levels are estimated for the Middle East, South-East 
Asia, and Oceania countries, as well as China and India. Although there are some differences, 
this spatial pattern remains relatively stable across different model specifications (including those 
for the basic GWR model). 

For the control variables, the most significant estimated impact is associated with the fraction of 
the urban population, followed by population density. This finding aligns with the conceptual 
arguments and empirical evidence provided by literature that “Urbanization plays a crucial role in 
the economic development of every country” (Di Clemente et al., 2021, p.1). 

For the control variables, the most significant estimated impact is associated with the fraction of 
the urban population, followed by population density. This finding aligns with the conceptual 
arguments and empirical evidence provided by literature that "Urbanization plays a crucial role in 
the economic development of every country" (Di Clemente et al., 2021, p.1). However, it should 
be noticed that the effects exercised by the development of economic, social, technological and 
cultural urban infrastructure are spatially non-stationary. A possible explanation might be related 
to the evidence that a country’s economic development “is interwoven with the urbanization 
process during the early stages of its economic development and growth. Meanwhile in urbanized 
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countries, the reciprocal relation between economic growth and urbanization fades away with 
respect to its later stages" (Di Clemente et al., 2021, p.1). 

Figure 3. The coefficient for EPI in a Mixed GWR model  
with ‘bi-square’ kernel function 

 

Notes: The results correspond to EPI coefficients for the last model in Table 1. All the specifications 
correspond to the ones mentioned in Table 1. 

 

Robustness check: Multiscale GWR and Mixed GWR-SAR models 

This section delivers a robust assessment of the main results. More precisely, standard GWR 
models assume that all implied processes operate at the same spatial scale. This happens only 
sometimes since, for different empirical data, variations in regression relationships may occur 
across different spatial scales. This strong assumption can be relaxed by considering a 'Multiscale 
Geographically Weighted Regression' (MGWR). The MGWR approach aims to obtain an optimal 
bandwidth vector, in which each element indicates the spatial scale at which a particular process 
occurs. In addition, greater flexibility can be achieved by searching not only for a different 
bandwidth for each relationship in the considered model, but also (and simultaneously) by 
searching for a different distance metric for each relationship (i.e. by using a 'Parameter- Specific 
Distance Metric GWR'- PSDM -GWR). The key idea is that the relationships between the 
dependent and each independent variable may display their distinctive response to the weighting 
computation, i.e., the choice of distance metric. Thus, the flexible bandwidth GWR can potentially 
provide a more realistic description of the considered effects in the model (Lu et al., 2015; 
Fotheringham et al., 2017; Murakami et al., 2018; Fotheringham et al., 2023). 

Table 2 reports various Multiscale GWR models with non-Euclidian / Euclidian distance metrics 
and three different kernel functions. Several observations can be highlighted here. First, the 
corresponding values for the EPI coefficients appear to fail in a narrow band compared to the 
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basic and mixed GWR models. Second, the coefficients' range is broader for the other variables. 
Such results hold particularly for the case of population density, for which more significant 
negative local coefficients are estimated. Third, the values of corrected AIC and BIC criteria are 
lower for all the multiscale models. This outcome suggests that such models might fit the data 
better. Nonetheless, the values of the residual sum of squares are comparable with those 
registered for basic and mixed GWR models (as are the corresponding R2). Overall, the 
previously identified spatial patterns for the effects exercised by the explanatory variables are not 
substantially modified from a qualitative point of view. 

 

Table 2. Various Multiscale (PSDM-GWR) model specifications 

Model EPI PD UP OR AIC 
corrected 

BIC Adjusted  

𝑅2 
Multiscale; PSDM-GWR; Non-Euclidian distance; Kernel: ‘Gaussian' 

GWR 
variables 

[0.028; 
0.052] 

[0.070; 
0.104] 

[-0.007; 
0.550] 

[0.071; 
0.077] 

197.116 87.212 0.831 

Bandwidth            23              104           14           149    

Multiscale; PSDM-GWR; Non-Euclidian distance; Kernel: ‘bi-square' 

GWR 
variables 

[0.027; 
0.052] 

[-0.537; 
0.495] 

[0.011; 
0.580] 

[0.048; 
0.117] 

194.034 88.235 0.837 

Bandwidth 110 64 53           133    

Multiscale; PSDM-GWR; Non-Euclidian distance Kernel: ‘tricube' 

GWR 
variables 

[0.026; 
0.053] 

[-0.695; 
0.795] 

[-0.152; 
0.632] 

[0.059; 
0.071] 

195.966 96.056 0.840 

Bandwidh 110 52 32          165    

Multiscale; Euclidian distance; Kernel: ‘bi-square' 

GWR 
variables 

[0.028; 
0.052] 

[-0.618; 
1.085] 

[0.005; 
0.581] 

[0.078; 
0.091] 

194.276 92.470 0.839 

Bandwidh 110 39 53           165    

Multiscale; Euclidian distance; Kernel: ‘tricube' 

GWR 
variables 

[0.029; 
0.051] 

[-0.649; 
0.734] 

[-0.069; 
0.584] 

[0.068; 
0.080] 

196.051 89.412 0.837 

Bandwidh 130 53 42           165    

Notes: PD - Population density (people per sq. km of land area); UP - Urban population (% of total population); 
OR - Oil rents (% of GDP) 

For the PSDM-GWR specifications, a’ Minkowski distance’ of order five is used in the case of EPI variable 
and, respectively, of order three for all the others. For the PSDM-GWR with a ‘Gaussian’ kernel, the 
residual sum of squares is 23.351. If the ‘bi-square’ kernel is considered, the residual sum of squares 
is 22.296, while for the ‘tricube’ kernel this sum is 21.616. Finally, for the model with Euclidian distance 
and the ‘bi-square’ kernel, the corresponding value is 21.701, while for the ‘tricube’ kernel this value 
is 22.698. All the models are implemented in the R package ‘GWmodel’ (Gollini et al., 2015; Lu et al., 
2014a; Lu et al., 2024). 

 

Furthermore, we account for the possible existence of some spatial autocorrelations at the level 
of the Data Generative Process (DGP) for countries' GDP per capita (i.e. correlation among 
values of this variable that are attributable to their relatively close locational positions). Such 
autocorrelation can inflate Type I errors and can generate the appearance of some 'red herrings' 
(Diniz-Filho et al., 2003). Several arguments can be advanced for assuming that geographically 
nearby GDP values tend to display similar profiles. For instance, countries that are close from a 
locational point of view can share more substantial flows of goods, technology and labour forces. 
There is also a higher chance of the spread of endogenous and exogenous shocks between them 
and the synchronization of their macroeconomic environment conditions. 



  Bogdan DIMA, Lucian ALBU & Ştefana Maria DIMA 

 Institute for Economic Forecasting 16 

We use a 'Mantel test' to highlight such potential spatial autocorrelation (Mantel, 1967; Mantel & 
Valand, 1970). This test implies a nonparametric analysis of the relationship between two 
dissimilarity matrices for data concerning the same individuals or sampling units. As Anselin 
(1995) shows, this test can be viewed as a generalization of Moran's I or Geary's c tests for spatial 
autocorrelations (see Legendre et al., 2015, for a critical discussion about the test). The first matrix 
is an 'environmental distance matrix' for the GDP per capita variable. In contrast, the second one 
is a 'geographic distance matrix', i.e. the physical distance between countries in our dataset. The 
aim is to check if the dissimilarities between countries’ economic outputs are correlated or not 
with their proximity. 

Table 3 reports the results. If Spearman's rank correlation measure is used, the hypothesis that 
the GDP per capita distance matrix is related to country geographic separation cannot be rejected. 
In other words, if countries are more distant, they become more dissimilar regarding their 
economic development. However, such a relationship does not appear if Pearson's product-
moment correlation is instead used. Nonetheless, the assumptions implied by these two statistics 
are different. As Legendre (2015, p. 1241) explains: “The first assumption is that the 
relationship is linear, if a cross-product or a linear correlation coefficient is used as the Mantel 
statistic, or monotonic if the dissimilarities are replaced by their ranks (Mantel 1967) or if a 
Spearman or Kendall correlation coefficient is used to compute the Mantel statistic (Dietz 1983)”. 
Hence, the relationship between the considered dissimilarities matrices might be monotonic, but 
not necessarily linear. Overall, it is perhaps more prudent to assume the existence of some spatial 
autocorrelations in the characteristic DGP for GDP per capita. For comparison, we note that the 
corresponding value of a Moran test applied for a regression model with GDP as the dependent 
variable and only a constant as the explanatory variable equals 311.320 (p-value =0.000). For 
that reason, we can reject the null that the errors of such a regression model are i.i.d. A SAR 
model can be appropriate to reflect the existence of some spatially distinctive development 
clusters. 

 

Table 3. Mantel (1967) test 

Mantel statistics Based on Pearson's product-
moment correlation 

Based on Spearman's rank 
correlation 

Level and p-value  0.020 
(p-value=0.236) 

0.052 
(p-value=0.024) 

Notes: Mantel statistic is a correlation between entries of two dissimilarity matrices. The first matrix is a GDP 
distance matrix created by using the’ Euclidean Distance’. The second matrix is the ‘Haversine 
distance’ between countries. The null hypothesis is the is the absence of relationship between values 
in these two dissimilarity matrices. The null distribution (and significance level) is obtained through 
randomisation. The null distribution is generated by shuffling the locations (matrix rows and columns) 
of one of the matrices to calculate an empirical null distribution for the given data set. The 
implementation of the test is based on Legendre & Legendre (2012). The number of permutations is 
equal with 9999.  The test is implemented by the R package ‘vegan’ (Oksanen et al., 2024). 

 

Geniaux and Martinetti (2018) introduces a class of spatial regression models (MGWR-SAR) that 
simultaneously deal with spatial dependence and heterogeneity by combining mixed GWR 
with SAR (Spatial Auto-Regressive model). The main advantage of an MGWR-SAR model is that 
it allows the regression parameters and the spatial autocorrelation coefficient to vary over the 
space. Such models involve the spatial two-stage least squares technique for model calibration. 
We consider two models from this class to account for the possible spatial autocorrelations in the 
GDP per capita. 

The first model is a MGWR-SAR(0, 𝑘𝑐 , 𝑘𝑣) specified as: 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-autoregressive-model
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/autocorrelation
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𝐺𝐷𝑃 = λWGDP + 𝛽𝑐𝑋𝑐 + 𝛽𝑣(𝑢𝑖 , 𝑣𝑖)𝑋𝑣 + 𝜀𝑖; 𝑋𝑐 = (
𝑃𝑂𝑃𝐷𝐸𝑁𝑆

𝑂𝐼𝐿
)
𝑐
  ; 𝑋𝑣 = (

𝐸𝑃𝐼
𝑈𝑅𝐵𝐴𝑁

)
𝑣
 (4) 

Here W is the spatial weight matrix for spatial dependence (a sparse numeric matrix in the 

compressed, sparse, column-oriented format. The non-zero elements in the columns are sorted 
into increasing row order). 𝑋𝑐  are the independent variables with constant coefficients 𝛽𝑐 and 𝑋𝑣  
are the independent variables with spatially varying coefficients 𝛽𝑣 . (𝑢𝑖 , 𝑣𝑖)  denotes the x-y 

coordinates of the ith point, and 𝜀𝑖  is a spatially uncorrelated term. 

The second model is a MGWR-SAR(1, 𝑘𝑐 , 𝑘𝑣) as: 

𝐺𝐷𝑃 = λ(𝑢𝑖 , 𝑣𝑖)WGDP + 𝛽𝑐𝑋𝑐 + 𝛽𝑣(𝑢𝑖 , 𝑣𝑖)𝑋𝑣 + 𝜀𝑖; 

𝑋𝑐 = (
𝑃𝑂𝑃𝐷𝐸𝑁𝑆

𝑂𝐼𝐿
)
𝑐
  ; 𝑋𝑣 = (

𝐸𝑃𝐼
𝑈𝑅𝐵𝐴𝑁

)
𝑣
 (5) 

Table 4 reports the results. These results suggest that a broader range of the EPI local coefficients 
is estimated when a SAR component is considered compared to a mixed GWR model without 
such a component. The median estimated levels for the EPI coefficients (0.037 and, respectively, 
0.039) are lower than those for the mixed GWR without SAR term (0.042), but this difference is 
not significant. There are some differences between MGWR-SAR (0, 𝑘𝑐 , 𝑘𝑣)  and MGWR-

SAR(1, 𝑘𝑐 , 𝑘𝑣) specifications. Although the MGWR-SAR(0, 𝑘𝑐 , 𝑘𝑣) model implies larger extreme 

values of these coefficients, it has associated lower RMSE and residual sum of squares values 
(but greater corrected AIC criterion). The differences between specifications for the other 
explanatory variables are more pronounced concerning the effects induced by urban population. 
Simultaneously, for constant coefficients, the estimated levels are relatively close between 
specifications (as well as with those from the mixed GWR without SAR component). 

Finally, the estimated λ parameter takes both positive and negative values in MGWR-

SAR (1, 𝑘𝑐 , 𝑘𝑣)  model. Such an outcome can be interpreted as generated by a non-linear 
relationship between the dissimilarities in economic development profiles of countries and their 
geographical distances. This might explain why including a SAR term does not contribute to a 
better model fit (accounting for corrected AIC and residual sum of squares) than the model without 
SAR. 

Table 4. MGWR-SAR models 

Model   λ EPI PD  UP  OR AIC 
corrected 

RMSE Residual 
sum of 

squares 

MGWR-SAR(0, 𝑘𝑐 , 𝑘𝑣) 
Global 

coefficient 
0.008  0.040  0.096    

GWR 
variables 

 [-0.009; 
0.094] 

 [-0.162; 
0.850] 

 438.082 0.314 16.467 

MGWR-SAR(1, 𝑘𝑐 , 𝑘𝑣) 
Global 

coefficient 
  0.058  0.083    

GWR 
variables 

[-0.311; 
0.925] 

[-0.001; 
0.069] 

 [0.033; 
0.784] 

 385.181 0.383 24.481 

Minimal and maximal GWR coefficients in []. 

Notes: PD - Population density (people per sq. km of land area); UP - Urban population (% of total population); 
OR - Oil rents (% of GDP).  

A 'bi-square' kernel function is used. An adaptive bandwidth is used to estimate the models. This bandwidth 
is equal to 53 (number of nearest neighbours). The estimation technique for computing the models 
with spatial dependence is ’B2SLS’. A spatial weight matrix of four nearest neighbours with 0 in 
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diagonal is involved. The type of Generalized Kernel Product is ’GD’ (only spatial). The models are 
implemented by using the R package ‘mgwrsar’ (Geniaux & Martinetti, 2018; Geniaux & Martinetti, 
2023). 

 

Overall, the Multiscale GWR models appear to provide the best fits for our dataset in terms of the 

corresponding values for corrected AIC, BIC, adjusted R2 , and the residual sum of squares. 
Interestingly, as Figure 3 illustrates, these models provide a less heterogeneous estimation of the 
effects associated with the EPI variable. Indeed, large geographical areas such as Europe, Africa 
and the Americas now display median or higher levels of EPI impact. Correlatively, the Middle 
and Far East or countries from Australasian or Oceanian biogeographic realms display lower 
impact exercised by the EPI on economic development. 

 

Figure 4. The coefficient for EPI in a Multiscale GWR model with ‘bi-square’ 
kernel function and Euclidian distance 

 

Notes: The results correspond to EPI coefficients for the last model in Table 2. All the specifications 
correspond to the ones mentioned in Table 2 

4. Comments 
Our results suggest that environmental performance can influence global economic development. 
Nonetheless, such an influence is spatially heterogeneous. The implied effects vary substantially 
across different geographical regions or clusters of countries. Several observations can be 
formulated in regard to the plausibility of the results. First, several clusters of countries can be 
differentiated according the specific impact exercised by EPI. One cluster includes the European 
Nordic and North American countries. For these countries, high economic development is 
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associated with high or medium-to-high performance in environmental protection. Due to their 
technological advances, they have achieved a sustainable development path, reducing, at the 
same time, economic activity's negative ecological impact. On the opposite side of the spectrum, 
another cluster includes countries from Africa, South America, the Middle and Far East, and 
Oceania, with poorer performance in both development and environmental status. Between these 
two clusters, at least three other groups can be found. One intermediary cluster includes high-
income countries (such as Italy, Spain, Japan, Portugal, Cyprus, the Baltic countries, Singapore, 
South Korea or New Zealand) with average environmental performance. Another intermediary 
cluster consists of emerging economies (e.g. Central and Eastern European countries, Türkiye, 
Belarus, Kazakhstan, Malaysia, Thailand or South Africa) with low-to-medium levels of EPI. 
Finally, there are some apparent 'outliers' with a disconnected economic evolutionary path and 
environmental advancements (the Gulf countries, China, Saudi Arabia, Indonesia, Vietnam, India 
or the Philippines). 

All these clusters of countries suggest that the effects of environmental performance are 
propagated non-linearly over development. The spatial nature of these effects can be explained 
by the distinctive content and non-uniform efficiency of the implemented pro-environmental 
policies and by the spatial autoregressive nature of the development processes themselves. 

Second, our results can be placed in the broader framework of 'modernization theory' (Arat, 1988; 
Bernstein, 1971; Roxborough, 1988; Zapf, 2004). If technological advances transform economic 
structures, democratic institutions will more effectively ensure citizens' fundamental rights and 
social mobility. In such a context, traditional economic activities with a potentially disruptive 
environmental impact are gradually replaced by ecological-neutral or beneficial ones. Also, a 
larger urban population that can cover its basic needs accesses higher education, is more 
involved in social and political life and is becoming more concerned about environmental issues. 
In a democratic society, these 'post-materialist' citizens can voice their concerns on a wide range 
of environmental-related topics and may pressure public authorities to adopt pro-environmental 
public policies. 

Third, our results show that various GWR models can better describe the effects exercised by the 
environmental performance. Yet, these models also reveal the non-linear nature of the 
relationship between countries’ differences in terms of their economic profiles and ecological 
outcomes and their geographical location. The forces of globalisation are shaping this relationship 
in a non-uniform manner by changing the role played by geography in the socio-economic profiles’ 
synchronisation. In other words, if spatial location matters, it matters differently than for pre-
modern societies. 

Fourth, in our proposed model, 'distance' is meant to reflect 'spatial effects' and not 'contextual 
effects'. As Feuillet (2024) argues, the significant distinction between these two types of 
effects can be understood based on how geographical location is viewed: either as continuous 
(and thus describing 'distance effects') or as discrete (and therefore depicting 'contextual effects'). 
Since we are mainly interested in the consequences exercised by the distances between 
countries, our analysis deals with ‘geographic areas’ and not with 'places'. Therefore, we adopt a 
space-based approach involving spatially explicit models such as GWR. Of course, there is an 
analytical price to be paid here, namely the fact that such models do not account for the 
aggregation of observations within places, i.e. the effect of 'togetherness' among those 
observations that fall within close geographical boundaries (see Feuillet et al., 2024 for this point). 
Since our dataset includes, for instance, countries that are members of the European Union and, 
thus, are subject to some common environmental regulations, this issue might be particularly 
relevant for capturing the effects exercised by EPI. A more detailed analysis is required to clarify 
this aspect better. 

Fifth, our model does not include time effects. So, we cannot capture the potential time-varying 
nature of the relationship between environmental performance and economic development. 
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Intuitively, it can be argued that such a relationship evolves as countries pass through different 
development stages and shift their economic structures from traditional ones to more knowledge-
based ('postmodern') mechanisms of growth. 

Moreover, a deeper analysis of this topic should at least advance a sound and detailed 
gnoseological framework able to clarify the transmission channels for the impact exercised by the 
natural environment on economic development, combining both spatial and time effects, address 
potential endogeneity issues that can arrive from the bi-univocal causality running between 
development and environmental status, provide extended explanations for the heterogeneity and 
non-linear nature of the implied effects, integrate the environment in a more complex model of 
development and add other relevant explanatory variables, or better clarify the role played by 
different multilevel structures and mechanisms or by the globalization forces.  

There are two distinctive yet interrelated questions. The first one can be phrased as: Is there any 
relationship between environmental protection and development? Correlatively, the second 
question is: Does geographical location matter in explaining the shape of such a relationship? 
While the present analysis answers affirmatively to the second question, it does not address 
specific details of a possible response to the first one. A complete development model that 
includes the environmental sector must tackle the first question. Our results also point toward an 
affirmative answer to this question. 

5. Conclusions 

We find that a country's geographical location matters in explaining the influence exercised on its 
development level by its efficiency in preserving the natural environment. The implied effects are 
subject to significant heterogeneity across different geographic areas, and distinctive clusters of 
countries can be identified in this respect. One of the most exciting results is that higher levels of 
development are not necessarily associated with a worsening degradation of the environment. 
Contradictory, as the European Nordic and North American countries illustrate, by applying 
efficient pro-environment policies, countries may simultaneously achieve better performance in 
terms of both environmental performance and development. In addition, other socio-demographic 
variables that reflect various facets of modernization processes can jointly contribute to achieving 
the sustainable development. 

Several policy implications can be derived from such findings. The first (and most important) is 
that a country cannot implement environmental policies by itself. Instead, various regional and 
international spatial spillovers should be accounted for. Coherent and integrated international 
efforts should be implemented to prevent the natural environment's degradation and mitigate its 
negative socioeconomic implications. Second, the model of economic growth should be 
reconsidered in order to achieve its long-term sustainability through a 'virtuous cycle' of 
'environment protection-growth-societal sustainability' mechanisms. 

Third, the weighting of various stakeholders’ interests should be carefully considered when 
pursuing different social objectives directly or indirectly connected with the current and future 
environmental status. 

Although the proposed analysis has several limitations, and more research is required to clarify 
the subsequent implied mechanisms, its central message is straightforward: No country can stay 
isolated when it comes to environmental protection, and the welfare of its citizens largely depends 
on the welfare of their closer or distant neighbours. 
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