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Abstract 
The change in the production scale of agricultural products not only affects the income of 
agricultural producers and the management decisions of agriculture-related enterprises, but also 
affects national food security; therefore, the accurate prediction of the production scale of 
agricultural products cannot be ignored. Agricultural futures as a financial derivative have 
precedence; their price fluctuation is the result of the role of multiple parties, which, to a certain 
extent, can respond to and affect the production of agricultural products. Based on the high-
frequency characteristics of agricultural futures prices and the growth cycle of agricultural 
products, this paper selects the high-frequency monthly futures price data of soybean and corn 
as the research object and compiles the growth cycle futures price data of agricultural products, 
selects the mixed-frequency data regression model to predict the scale of agricultural product 
production, and takes the benchmark prediction model as a reference to comprehensively 
compare the prediction effect.The conclusions of this paper are as follows: 1. the mixed-frequency 
data regression model for agricultural futures prices can predict the scale of agricultural 
production in China, and the direct prediction using mixed-frequency data can tap the potential 
information contained in the high-frequency data, thus improving the prediction accuracy; 2. there 
is a negative effect between monthly agricultural futures prices and the related agricultural 
production in the period of March to May near the harvest, especially in the recent month, which 
is the most obvious. 

Keywords: agricultural production scale; agricultural futures prices; mixed-frequency data; 

mixed-frequency data regression models. 
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Introduction 
The agricultural futures market plays an important role in regulating and safeguarding the market 
to iron out risky fluctuations in supply and marketing, promote the quality and efficiency of 
agricultural production, and steadily realize national food security. As the future price of 

                                                           
1. School of Economics and Management, Chongqing Normal University, No. 37 of Middle Road of University 

Town, Shapingba District, 401331, Chongqing, China 
2  Big Data Marketing Research and Applications Center, No. 37 of Middle Road of University Town, 

Chongqing Normal University, Shapingba District, 401331, Chongqing, China 
* Corresponding author: Email: xianningwang@sina.com 

7
. 



Can the Futures Price of Agricultural Products Predict the Scale of China's Agricultural Production?   

Romanian Journal of Economic Forecasting – 27(4)2024 129 

agricultural products, agricultural futures prices have direct and indirect guiding effects on the 
current scale of agricultural production. Firstly, the price transmission mechanism of agricultural 

production has the ability to better respond to market demand；secondly, the hedging mechanism 

of agricultural futures trading can reduce the loss and risk of agricultural practitioners in the case 
of a mismatch between supply and demand. However, although academics and the industry have 
long recognized the virtual and investment attributes of the agricultural futures market and the 
potential relationship between the physical and industrial development of agricultural production, 
and in particular the former's role in foreseeing and pointing to the latter in advance, there is a 
lack of quantitative research that takes into account the mixing of data, time span, forecasting 
technology, accuracy requirements, etc.Therefore, whether agricultural futures prices can predict 
the scale of agricultural production has become an important area worth exploring in China. 

Domestic and foreign scholars are mature and rich in research on forecasting the scale of China's 
agricultural production, but most of them first homogenize the data of the factors to be considered, 
identify the relationship between the influencing factors, and establish a forecasting model and 
method with better accuracy. Objectively speaking, the statistical frequency of agricultural futures 
price data is relatively high, the statistical frequency of agricultural production scale data is 
relatively low, and the homogenization data processing method will lead to human intervention of 
data information. First, the low-frequency processing of high-frequency data will lead to the short-
term fluctuation of ignoring the influencing factors;secondly, the high-frequency processing of low-
frequency data will increase the human intervention in the data, and third, the excessive cleaning 
of data has potential impacts on the selection of the model and the calculation of accuracy. The 
potential impact of excessive data cleaning on model selection and accuracy calculations. The 
mechanism of action, data quality, and model selection are the three elements that determine the 
feasibility of forecasting, while the quality of data in empirical studies often gives way to the other 
two. Numerous studies at home and abroad can support the mechanism of agricultural futures 
prices on the production scale of Chinese agricultural products, and there are also many attempts 
at model selection. However, the research on constructing forecasting models by directly applying 
the mixed frequency data of agricultural futures prices and China's agricultural production scale 
needs to be further deepened, and the specific analysis of the differential forecasting changes of 
different agricultural futures needs to be further researched, which has great theoretical value and 
practical significance. 

Different from the traditional prediction model, the mixed-frequency prediction model can not only 
directly incorporate the sample data of different frequencies into the same regression model and 
use the data overrun of high-frequency explanatory variables to predict low-frequency explanatory 
variables, but also flexibly select the specific form of lag order and weight function according to 
the sample data of low-frequency and high-frequency variables, so as to increase the prediction 
accuracy and improve the prediction effect. Domestic and foreign research has been applied in 
the economic field and has achieved better progress. For example, Clements et al. (2009) use 
monthly and quarterly data to construct a MIDAS model to predict the U.S. quarterly GDP; Zheng 
and Wang. (2013) predict China's economic cycle by constructing a mixed-frequency data district 
system transfer dynamic factor model that can comprehensively utilize China's monthly and 
quarterly data; Gong and Chen. (2014) use a multivariate mixed-frequency data regression model 
to predict China's monthly CPI; Liu et al. (2011) used a mixed data sampling model to forecast 
and predict China's quarterly GDP and empirically analyzed export is the main factor causing 
China's economic growth deceleration during the financial crisis. Therefore, this paper, drawing 
on previous studies, focuses on mixed-frequency data to improve the timeliness and accuracy of 
agricultural futures prices in forecasting the scale of agricultural production in China. 

In order to answer the question of whether agricultural commodity futures prices can predict the 
production scale of Chinese agricultural commodities, this paper compiles agricultural commodity 
cycle futures data according to the growth cycle of agricultural commodities and tries to construct 
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a mixed-frequency forecasting model and method for the production scale of Chinese agricultural 
commodities in view of the dimensions of mixed-frequency data, time span, forecasting 
technology, and accuracy requirements. The monthly futures market prices of two major 
agricultural products, soybean and corn, are selected as the research object, and the agricultural 
product cycle futures price data are compiled. The production scale of agricultural products is 
expressed by the agricultural product output, so as to empirically analyze the timeliness and 
accuracy of the prediction of the agricultural product production scale by agricultural product 
futures prices and to comprehensively compare the prediction effect by taking the benchmark 
prediction model as a reference. 

Literature review  

At present, many scholars have predicted the scale of agricultural production through multi-
methods such as Bastiaanssen et al. (2003). By the high-resolution radiometer AVHRR 
measurements of 20 satellites in the Geographic Information System to cover the annual crop 
rotation cycle, predicting the entire Indus Basin along the Pakistani crop yield, the study found 
that the model of wheat, rice, sugarcane agricultural production prediction effect relative to the 
cotton, while providing better spatial details for agricultural production decision makers than 
traditional area-level data; De Wit et al. (2007) used ensemble Kalman filtering to assimilate 

microwave remote sensing inversions of soil moisture content into the WOFOST (world food 
studies) model to predict winter wheat yields in southwestern Europe, and found that the use of 
this assimilation method can improve regional winter wheat. Yu et al. (2007) combined a logistic 
model with a stepwise regression model to predict soybean yields and found that the combined 
prediction model could significantly improve the prediction accuracy. Ji and Zhu (2008) applied 
the climatic factors in northern China to the prediction of agricultural yields in the northern region 
of China, and estimated the yields of agricultural products such as maize, rice and wheat through 
the meteorological yield prediction method, and the prediction analysis found that the climatic 
factors had a significant effect on the prediction of yields.  

And Simelton et al. (2009) used a mixed-effects model to estimate agricultural yields of maize, 
rice, and wheat by using meteorological yield prediction methods and found that climatic factors 
had a greater impact on agricultural yields. Simelton et al. used a mixed-effects model to confirm 
that the use of irrigation water had a serious impact on the agricultural yields of grains in China 
by considering the area of arable land, the number of people working in the agricultural industry, 
the capital used in the agricultural industry, agricultural technology, and the infrastructure of the 
agricultural industry. Becker et al. (2010) combined a daily surface reflectance dataset corrected 
by a bi-directional reflectance distribution function with crop statistics to develop a regression 
prediction model for winter wheat agricultural production in Kansas and applied the regression 
model directly to the prediction of winter wheat agricultural production in the Ukraine. The study 
found that the prediction method is simple, has limited data requirements, and is able to provide 
indications of pre-harvest yield shortages and surpluses of winter wheat in areas with fewer daily 
surface reflectance data; Xiao et al. (2010) developed a grey support model for peanut agricultural 
production. grey support vector machine combination model on peanut agricultural output, and 
found that the prediction accuracy of the grey support vector machine combination model was 
significantly higher than that of the two single models, grey prediction and support vector machine; 
Zhang and Zou (2011) predicted Chinese grain agricultural output through five model averaging 
methods, namely, S-AIC, S-BIC, MMA, JMA, and OPT, and confirmed that China's grain 
agricultural output was predicted based on the model averaging methods with a The prediction 
accuracy is high, and reasonable screening of models before combining models can improve the 
prediction accuracy; Chen (2013) combined the grey GM(1,1) model and Markov model to predict 
the grain output of Qingdao city, and the prediction results show that the grey Markov model has 
a high prediction accuracy for medium- and long-term prediction of the grain output which is more 
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fluctuating; Prentovic et al. (2015) predicted Chinese grain agricultural output by a combination of 

model-averaging and model-averaging methods in an important walnut producing area（Novi 

Sad region in northern Serbia) to construct a walnut yield regression prediction model and used 
Pearson correlation analysis to study the relationship between annual walnut yield and biotic 
factors (e.g., airborne pollen data), and abiotic factors (e.g., meteorology), and found that walnut 
agricultural yield depends largely on the weather conditions, and the amount of airborne pollen 
also plays an important role. 

In order to avoid the technical trends in agricultural yield data, Ghosh et al.(2015) shown that rice 
yield simulated using observed weather data was used as a baseline for prediction analysis 
through the Integrated Resource and Environment-Rice Crop Simulation Model, and it was found 
that the level of prediction of rice yield increased significantly with the inclusion of weather 
observations, and the simulation model reduced the uncertainty in the prediction of rice yield; In 
terms of agricultural yield and considering the influencing factors of yield, Khan et al.(2017) 
predicted the yield of agricultural products from the perspective of the relationship between 
agricultural research and development, and the prediction results show that there was a 
significant correlation between agricultural research and development and agricultural products' 
yield; Li (2017) used the grey GM(1,1) model as the basic method to construct a grey linear 
combination prediction model for the demand of Beijing's agricultural products logistics, and the 
study confirms that the grey linear combination model has a better fitting degree; Chen and Yu 
(2017) built a new dimensional unbiased grey Markov forecasting model for agricultural 
production, and the analysis results show that the model has a better forecasting accuracy and is 
suitable for medium- and long-term forecasting of agricultural production. 

Most of the above scholars predict agricultural production from the aspects of scientific and 
technological equipment, crop growth, agricultural production, etc., and few of them use 
agricultural futures to predict the production of related agricultural products from the financial point 
of view. On the relationship between agricultural futures and spot prices, many scholars have 
studied how, He et al. (2013) used the VEC model, Granger causality test, impulse response 
analysis and BEKK model to empirically analyze the price discovery function and volatility 
spillover effect of China's cotton futures and spot market. The results of the study show that there 
exists a long-term equilibrium relationship and a two-way Granger-led relationship between 
futures prices and spot prices. However, the futures market has a stronger guiding effect on the 
spot market and a stronger information effect than the spot market. In addition, both markets have 
strong volatility lag effects and significant mutual volatility spillover effects, but the volatility 
spillover effect of the futures market on the spot market is significantly larger than the volatility 
spillover effect of the latter on the former; Li et al. (2018) adopted typical futures varieties in China 
as the samples, and use econometric modelling to analyze the relationship between futures prices 
and current spot prices. The study shows that for mature futures products, there is a short-term 
leading relationship between futures and spot prices on the basis of basically maintaining 
synchronous movements. Liu et al. (2006) conducted an empirical study on soybean varieties of 
the Commodity Exchange by using the cointegration test and other methods. It is concluded that 
the long-run equilibrium relationship between futures prices and spot prices affects the short-run 
price fluctuations and returns them to the long-run equilibrium state; futures prices and spot prices 
show strong interaction, and there exists a bidirectional Granger causality, i.e., there exists a 
reciprocal price-led relationship between the two. 

Based on the relationship between agricultural futures prices and spot prices and the price 
discovery function of agricultural futures markets, this paper tries to use high-frequency monthly 
agricultural futures price data to predict the scale of agricultural production. Because the National 
Bureau of Statistics on the production and supply of agricultural products accounting for the 
highest frequency only annual value, and most of the agricultural products are cooked once a 
year, this prediction of the object of its own characteristics decided that the highest frequency can 
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only be the annual value, but the authors of the traditional prediction model used above can not 
deal with the different frequencies of the variables in the face of the mixed-frequency data 
modelling needs to be the same frequency of the data processing, which will produce the results 
will be This results in a serious loss of potential information in the high-frequency data, which 
leads to an increase in the prediction error. In order to overcome the limitations of the traditional 
model and make maximum use of the inherent volatility of high-frequency data and the trend of 
low-frequency data, this paper chooses the mixed-frequency data regression prediction model to 
directly incorporate the sample data of different frequencies into the same prediction model for 
prediction. 

Based on the excellent attributes of the mixed-frequency data regression prediction model, in 
recent years scholars at home and abroad have applied the mixed-frequency data regression 
prediction model to the prediction of various fields, Clements et al. (2009) used monthly and 
quarterly data to construct the MIDAS model to predict the quarterly GDP of the U.S.; Zheng and 
Wang (2013) predicted China's economic cycle by constructing the mixed-frequency data area 
system transfer dynamic factor model that can comprehensively use China's monthly data and 
quarterly data; Gong and Chen (2014) used multivariate mixed-frequency data regression model 
to forecast China's monthly CPI; Liu et al.(2011) took monthly investment, consumption, and 
export data to forecast quarterly GDP, and concluded that export is the main factor causing 
China's deceleration of economic growth in the period of financial crisis, and that the MIDAS 
model has a comparative advantage of accuracy in short-term forecasting of China's 
macroeconomic aggregates, and has significant feasibility and feasibility in real-time forecasting. 
The MIDAS model has a comparative advantage of accuracy in short-term forecasting of China's 
macroeconomic aggregates, and has significant feasibility and timeliness in real-time forecasting; 
Liu et al. (2010) used Monte Carlo simulation and China's macroeconomic fluctuation model to 
prove the validity of the MIDAS model in the forecasting of China's macroeconomy; Qin et al. 
(2022) utilized the MIDAS model to forecast the price of land. The use of MIDAS model by the 
above scholars has verified the timeliness and effectiveness of the model, but so far the use of 
the model is mostly focused on the economic field, and there is little prediction in the agricultural 
field. Based on the impact of agricultural futures prices on the supply side of agricultural products 
and the effectiveness and forward-looking nature of the MIDAS model, this paper aimed to use 
agricultural futures prices to predict the production scale of relevant agricultural products through 
the mixed-frequency data regression prediction model. 

Regression prediction model for  

one-dimensional mixed-frequency data 
The one-dimensional mixed-frequency data regression prediction model considers the effect of 
only one explanatory variable on the explanatory variables and investigates the dynamic 

relationship between the two. The annual production of agricultural products is𝑌𝑡
𝑄

 , the monthly 

agricultural product futures price is𝑋𝑑𝑚
𝑚 ,𝑡 , and the monthly agricultural commodity futures price 

can be observed for m values in the year [t-1, t], i.e., m is the frequency multiplicative difference 
between the high-frequency data and the low-frequency data. 

The mixed-frequency data regression forecasting model for annual production forecasts of 
agricultural products can be expressed as follows: 

                                             𝑌𝑡
𝑄
= 𝛼 + 𝛽𝑊(𝐿

1

𝑚; 𝜃) 𝑋𝑑𝑚
𝑚 ,𝑡+ 𝜇𝑡                             (1) 

where α is a constant term, and β are the coefficients, and 𝜇𝑡 is the model error term;𝑌𝑡
𝑄

 refers to 

the annual production of agricultural products in period t;𝑋𝑑𝑚
𝑚 ,𝑡  refers to the futures price of 

agricultural products in period t;W(𝐿
1

𝑚; 𝜃) is a polynomial function on the weight function 𝜔𝑖(𝜃) a 
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polynomial function with the expressionW(𝐿
1

𝑚; 𝜃) = ∑ 𝜔𝑘
𝑘=0 (𝑘; 𝜃) 𝐿

𝑘

𝑚  and 𝐿
𝑘

𝑚𝑋𝑑𝑚
𝑚 ,𝑡= 𝑋𝑑𝑚

𝑚 ,
𝑡−

𝑘

𝑚

 ; 𝜃 

are the parameters of the polynomial weights, k is the maximum lag order of the high-frequency 
explanatory variables, and k=0 denotes the monthly agricultural futures price in October and k=1 
denotes the monthly agricultural futures price in the 11th month. 

The mixed-frequency data sampling model with h steps forward ( MIDAS(m, K, h)) has the 
advantage of forecasting and correcting annual data in real time compared with the basic mixed-
frequency data sampling model and the traditional homoscedastic forecasting model. Generally 
speaking, the traditional homoscedastic forecasting model uses annual data when forecasting 
annual data, and the acquisition of real-time annual data has a certain time lag, MIDAS(m, K, h) 
can make full use of the updated monthly data to make real-time forecasts of annual data, and 
constantly update and correct the forecast results. When h = 1, the data from the first 3 quarters 
of year t and before are used to forecast the annual data in year t. When h = 4, annual data for 
year t can be forecast using quarterly data for year t-1 and earlier. 

The more general form of the forward h-step MIDAS model is: 

                                  Yt
Q
= α + βW(L

1

m; θ) Xdm
m ,

t−
h

m

+ μt                                                      (2) 

 

Since agricultural production is inertial and annual agricultural production in period t is influenced 
by its autoregressive period, the model should incorporate an autoregressive term. Therefore, the 
AR-MIDAS model is expressed as: 

                            Yt
Q
= α + ∑ γj

p
j=1 Yt−j + βW(L

1

m，θ) Xdm
m ,t+ μt                    (3) 

where j denotes the autoregressive order of the annual production of agricultural products and p 
is its maximum autoregressive order; γj is the effect of the respective regression period of the 

annual production of agricultural products on the current period. 

Polynomial weights can effectively reduce the parameters to be estimated in the model, in this 
paper, we discuss the effects of six polynomial weights on the prediction accuracy of the model 
for sampling mixed-frequency data and select the optimal form of polynomial weights. 

The general weight function constructed using the Beta density function takes the form: 

       ωi(θ) = ωi(θ1，θ2，θ3) =
f(xi，θ1，θ2)

∑ f(xi，θ1，θ2)
imaX
i=1

+ θ3                     bb                （4） 

where: i is the lag order of the weight function, and imaX is the maximum lag order of the weight 

function, the i  The range of variation of i = 0，1，…  and imaX，xi = i/i
maX  . f(xi，θ1，θ2) =

xi
θ1−1(1 − xi)

θ2−1Γ(θ1 + θ2)/Γ(θ1)Γ(θ2) .Γ(θ) = ∫ e−x
∞

0
xθ−1dx . 

Based on this function, respectively, take θ3  to 0 andθ1  as 1 to get two forms of weight 

functionωi(θ) which are the Beta weight function. One is the Beta weight functionωi(θ) that is, 

whenθ3 = 0 whenωi(θ) = ωi(θ1，θ2) = f(xi，θ1，θ2)/∑ f(xi，θ1，θ2)
imaX

i=1  ; two is the Beta-Non-

Zero weight function ωi(θ)  , i.e., when θ1 = 1  when ωi(θ)  =  ωi(1，θ2，θ3)  =  f(xi，1，θ2)/

∑ f(xi，1，θ2)
imaX

i=1 + θ3 . 

The Exponential Almon weight function (Exp Almon) is of the form: 

ωi(θ) = ωi(θ1，θ2，…，θQ) = exp(θ1i + θ2i
2 +⋯+ θQi

Q) /∑ exp(θ1i + θ2i
2 +⋯+ θQi

Q)imaX

i=1  (5) 

In this paper, a three-parameter almonte index weighting function is used to make predictions 
about the scale of production of agricultural products. 
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The Almon weight function (Almon) is expressed as: 

         βω(K; θ0，θ1，θ2，θ3) = ∑ θpk
p3

p=0                                    (6) 

The segmentation function (Step) weights are of the form: 

βω(k; θ) = θ1Ii∈[a0，a1] +∑ θpIi∈[ap−1，ap]
p
p=2                                  (7) 

where Ii∈[ap−1，ap] is a schematic function which takes the value of 1 when ap−1 ≪ i ≪ ap takes 

the value of 1 when, and 0 otherwise. 

The Unrestricted Mixed Data Sampling Model (U-MIDAS) does not have the restriction of 
polynomial weights in the base model and its model can be expressed as: 

                    Yt
Q
= α + B(β，L

1

m) Xdm
m ,t+ μt                                     (8) 

where B(β，L
1

m) = ∑ βk
k
k=0 L

k

m , the βk denotes the effect of each lag of monthly agricultural futures 

prices on current agricultural production. 

Comparison of prediction effect and 

accuracy   

4.1 Selection of data and forecasting indicators 

Based on the price discovery function of the agricultural futures market and the guiding role of 
agricultural production, this paper first selects the monthly futures prices of the soybean index 
and corn index from January 2005 to December 2022 as the high-frequency independent 
variables of soybeans and corn, and the annual production of soybeans and corn agricultural 
products from 2005 to 2022 as the low-frequency dependent variables, and establishes a model 

for forecasting；the monthly agricultural product futures price and annual production data of corn 

and soybeans from 2005 to 2019 are used as estimation samples for the model, on the basis of 
which out-of-sample forecasts of the annual production of corn and soybeans from 2020 to 2022 
are made. In the analysis process, the root mean square error (RMSE) index is used as the basis 
for measuring the model's strengths and weaknesses because the RMSE index can better reflect 
the model's prediction accuracy, and the smaller the RMSE is, the higher the model's prediction 
accuracy is.Then, according to the characteristics of the growth cycle of soybeans and corn, we 
compile the monthly data of the futures price index of the corresponding agricultural products' 
growth cycle, take it as the independent variable, select the corresponding annual production as 
the dependent variable, and establish the model for prediction. 

Specifically, the monthly data compilation of the agricultural growth cycle futures price index is 
based on the specific time of harvesting of the corresponding agricultural products in China as 
the basis for the division of the compilation. Take soybeans as an example. China's soybean 
sowing is mainly divided into spring sowing soybeans and autumn sowing soybeans. Generally 
speaking, spring-sown soybeans are planted before and after Qingming and harvested in 
September; autumn-sown soybeans are generally planted after the wheat harvest and harvested 
from late September to mid-October.As the end of October approaches, the country's soybeans 
have been harvested. At this time, the use of a mixed-frequency data regression prediction model 
in accordance with the calendar year and month system, with monthly data on the current year's 
production forecasts to join the November-December futures price data, will lag behind the real-
time forecasting and prediction accuracy, so this paper considers the current year's monthly 
futures price of soybeans in November as the cycle of the starting month and the next year's 
monthly futures price of soybeans in October as the cycle of the termination of the month. 
Compiling agricultural growth cycle futures price data. 
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The high-frequency explanatory variables of this paper, soybean index, corn index futures price 
monthly data, annual data source: Tongdaqin financial software, and low-frequency explanatory 
variables soybean and corn annual production data source: China Statistical Yearbook. 

4.2 Empirical analysis 

This paper attempts to use high-frequency monthly agricultural futures price data to predict the 
scale of agricultural production, while the national statistical calibre published on the production 
and supply of agricultural products in the account of the highest frequency is only the annual 
value. In the face of mixed-frequency data modeling, if you use the traditional forecasting model, 
the frequency of the data processing needs to be the same, which will result in the results of the 
high-frequency data of the potential information of the serious loss of the prediction error 
increasing. Using the MIDAS model, Liu Jinquan, Liu Han, et al. [15] demonstrated that because 
the mixed-frequency data model can directly use the mixed-frequency data to construct the 
model, it avoids the loss of information caused by data summing or interpolation and the inflated 
human information, maximizes the use of the existing high-frequency data information, and 
improves the validity of the estimation of the macro-econometric model and the accuracy of the 
prediction. In order to overcome the limitations of the traditional model and maximize the use of 
high-frequency data inherent volatility and low-frequency data trend, this paper selects the mixed-
frequency data regression forecasting model to directly incorporate different frequency sample 
data into the same forecasting model for prediction. 

(1) Analysis of mixed-frequency real-time prediction results for corn and soybeans    

Different mixed-frequency data sampling models are constructed using the above six parameter 
weighting forms and monthly agricultural futures prices and annual agricultural production of corn 
and soybean, respectively. In parameter estimation, this paper uses the principle of minimizing 
the root mean square error (RMSE) of out-of-sample prediction to determine the optimal weighting 
function, the optimal lag order for high-frequency monthly agricultural futures prices, and the 
optimal autoregressive order for low-frequency annual agricultural production. Due to the 
limitation of space, only representative high-frequency lag orders and low-frequency 
autoregressive orders are selected for display after empirical verification. The out-of-sample 
prediction accuracy of each mixed-frequency data model is shown in Table 1 and Table 3. 

 

Table 1 Out-of-sample RMSE values for different mixed-frequency models for 
real-time forecasting of annual production at monthly futures prices for maize 

weights 

Corn Monthly Futures Price Lag Order 

3 4 5 6 7 8 9 10 

Annual maize production autoregressive order of 1 

Beta 1.0504 1.0504 1.0504 1.0504 1.0504 1.0504 1.0504 1.0504 

Beta NN 1.3688 1.0991 1.0729 3.7492 0.9507 1.0438 0.9224 0.9576 

Exp Almon 1.1464 1.0504 1.1474 1.7156 1.0504 1.8708 1.0504 1.7639 

Almon 12.5736 1.7584 1.3556 3.0333 5.7706 0.8615 2.9468 2.1124 

Stepfun 2.2184 3.5228 4.5048 3.6281 3.7793 3.3304 4.1562 4.6905 

U-MIDAS 1.8117 1.7584 0.2603 0.5528 3.1838 4.6369 14.447 17.586 

  Annual maize production autoregressive order of 2 

Beta 2.0321 2.0321 2.0321 2.0321 2.0321 2.0321 2.0321 2.0321 
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Beta NN 2.757 4.2662 2.4244 2.1845 2.3802 2.9707 3.739 1.964 

Exp Almon 2.5507 2.0673 2.0474 1.8189 2.0465 2.9706 2.0321 2.1411 

Almon 1.3542 4.3325 3.3515 1.7924 4.3199 1.9267 2.492 1.8004 

Stepfun 2.6588 4.2662 3.6034 4.157 4.5108 4.7833 3.7139 5.413 

U-MIDAS 2.2217 4.3325 2.5322 3.7301 6.1848 5.7255     

 

From the above table, it can be seen that the values of RMSE of the six models change with the 
changes in the autoregressive order of the low-frequency variable annual corn yield and the 
lagged order of the high-frequency variable monthly corn futures price, and it can be found that 
the autoregressive unrestricted mixed-frequency data sampling model (AR(1)-UMIDAS(12,5)) 
has a higher accuracy of predicting annual corn yield during the period of 2020–2022, when the 
autoregressive order P is changed to the first order and the lagged order K is changed to the fifth 
order. For the 2022 period, the RMSE value is 0.2603. The empirical results show that the 
maximum influence of annual corn production on subsequent annual corn production is one year, 
and the influence of monthly corn futures prices on annual corn production reaches its maximum 
in the fifth month and then declines. 

Figure 1 shows the fluctuations of the model Beta-MIDAS, Beta Non-Zero-MIDAS, Exp Almon-
MIDAS, Stepfun-MIDAS, Almon-MIDAS weights, and U-MIDAS model coefficients under the 
optimal autoregressive order and optimal lag order. 

Figure 1: Fluctuation of five model weight functions and U-MIDAS model 
coefficients for maize with lag order 5 

 
 

As can be seen in Figure 1, the five coefficients estimated by the AR(1)-UMIDAS(12,5) model 
fluctuate in the range of (-1, 0.5), i.e., there are both positive and negative multiplier effects of 
monthly corn futures prices on the annual corn production, and this effect lasts for five months.By 
comparing the various mixed-frequency data sampling models described above, it was 
determined that the AR(1)-UMIDAS(12,5) model has a comparative advantage in terms of out-of-
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sample prediction accuracy for annual maize yields, and the parameter estimation results of the 
model are shown in Table 2.The estimation results indicate that annual maize yields are affected 
by their own variations in one year and that the total effect of annual maize yields on their own is 
36.2836%. The monthly futures price of corn has both positive and negative effects on annual 
corn production, which lasts for 5 months and is dominated by negative effects.The direction and 
extent of the impact of monthly corn futures prices on annual corn production are consistent with 
the reality in China. In the short term, because of the role of the supply and demand theorem, 
when the demand is relatively stable, the supply and price are in an inverse relationship; when 
the supply increases, the price will fall, and when the supply decreases, the price will rise. 
Because the futures market has precedence, the futures price of corn shows a corresponding 
response in the first few months of the corn harvest, which is reflected in the parameter estimation 
by the fact that the total effect in the last five months is negative, especially in the last one month, 
where the negative effect is the largest. 

Table 2. Results of parameter estimation of Almon-AR(1)-MIDAS model for 
maize 

model parameter Estimated results 

                                          𝛼  3.421675 

𝛽1 -0.91016 

𝛽2 0.458811 

𝛽3 -0.38068 

𝛽4 -0.11085 

𝛽5 -0.28418 

𝛾1 0.362836 

Notes:𝛼 Refers to the constant term of the model;𝛽𝑖 Refers to the effect of the monthly corn futures price lag 
period i on annual corn production in the current period;𝛾𝑗 Refers to the effect of autoregressive period 

j of annual corn production on the current period. 

Table 3 Out-of-sample RMSE values for different mixed-frequency models for monthly 
soybean futures prices for real-time forecasting of annual production 

weights 

Soybean Monthly Futures Price Lag Order 

3 4 5 6 7 8 9 10 

Annual soybean production autoregressive order of 1 

Beta 19.3595 19.3595 18.5131 18.0583 19.1802 19.2577 19.282 19.2911 

Beta NN 19.3308 18.1055 18.9865 16.8182 21.9726 17.9658 19.3555 18.9986 

Exp Almon 19.3985 18.3953 18.3039 19.3925 19.3844 18.9097 19.3784 20.9541 

Almon 18.8557 22.4298 17.5793 18.435 22.3482 21.2697 28.8087 26.5025 

Stepfun 17.5185 18.1055 14.8063 18.9492 19.0352 18.356 20.0845 20.9228 

U-MIDAS 19.1232 22.4298 23.5919 20.9306 21.7922 21.3325 22.3765  

 Annual soybean production autoregressive order of 2 

Beta 19.846 19.846 19.846 17.6888 19.2154 19.3628 19.4094 19.4235 
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Beta NN 24.9919 19.5483 18.4475 18.085 19.2015 19.7569 30.5684 21.5013 

Exp Almon 19.8459 19.327 18.4061 18.5066 18.5067 20.3521 23.7552 23.2828 

Almon 25.8314 29.6763 17.4063 17.9145 20.7022 17.4936 27.6774 23.651 

Stepfun 19.2942 19.5483 17.2902 19.5638 19.544 19.9781 22.0213 21.9643 

U-MIDAS 24.9919 29.6763 29.3709 15.2208 13.4479       

 

The results presented in Table 3 indicate that the autoregressive unrestricted mixed-frequency 
data sampling model (AR(2)-UMIDAS(12,7)) has a high accuracy in predicting the annual yield of 
maize for the period of 2020–2022, when the autoregressive order P is varied to the 2nd order 
and the lagged order K is varied to the 7th order, at which time the RMSE value is 13.4479. This 
empirical result indicates that the maximum period of influence of annual soybean production on 
subsequent annual soybean production is 2 years, and the influence of monthly soybean futures 
prices on annual soybean production reaches its maximum in the 7th month. 

Figure 2 Fluctuation of five model weight functions and U-MIDAS model 
coefficients for soybean lag order 7 

 
 

As can be seen in Figure 2, the AR(2)-UMIDAS(12,7) model estimates seven coefficients with a 
range of fluctuations of (-2, 3), i.e., there are both positive and negative multiplier effects of 
monthly soybean futures prices on annual soybean production, and this effect lasts for seven 
months. 

By comparing the various mixed-frequency data sampling models described above, it was 
determined that the AR(2)-UMIDAS(12,7) model has a comparative advantage in terms of out-of-
sample prediction accuracy for annual soybean yield, and the parameter estimates of the model 
are shown in Table 4.The estimation results indicate that the annual yield of soybeans is affected 
by its own changes over a period of 2 years and that the annual yield of soybeans itself has a 
total impact effect of 56.3607%. The monthly futures price of soybeans has both positive and 
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negative effects on annual soybean production, which lasts for 7 months and is predominantly 
positive. As in the analysis of corn, in the short term, because of the supply and demand theorem, 
when demand is relatively stable, supply and price are inversely related; when supply increases, 
prices will fall, and when supply decreases, prices will rise. Because the futures market is a 
precursor, the futures price of corn will show a corresponding reaction in the first few months of 
the corn harvest, but in the long run, or if we consider a longer period of time, the production of 
agricultural products is in a positive relationship with the price because the price of the relevant 
agricultural products will lead to an increase in the sowing area of the farmers to increase their 
production, and the decline in the price of the relevant agricultural products will lead to a decrease 
in the sowing area of the farmers to reduce their production. Thus, when monthly futures prices 
are lagged to the 7th order, the total effect is seen to be positive. 

Table 4 Parameter estimation results of AR(2)-UMIDAS model for soybean 

model parameter Estimated results 

                   𝛼   2.444767 

               𝛽1 -1.50011 

               𝛽2 -0.46429 

                𝛽3 -1.63508 

                𝛽4 0.54619 

               𝛽5                       1.104169 

               𝛽6                       2.617954 

               𝛽7    1.134593 

                  𝛾1  0.224407 

                  𝛾2  0.3392 

Notes:𝛼 Refers to the constant term of the model;𝛽𝑖 Refers to the effect of the monthly corn futures price lag 
period i on annual corn production in the current period;𝛾𝑗 Refers to the effect of autoregressive period 

j of annual corn production on the current period. 

(2) Mixed-frequency prediction of maize and soybean and analysis of baseline model results 

Benchmark model is used to compare and analyse the advantages and disadvantages of the 
prediction of the corn AR (1)-UMIDAS (12,5) and soybean AR (2)-UMIDAS (12,7) models 
constructed in this paper, some simple macroeconomic forecasting models, and this paper mainly 
adopts the 2 models of OLS and AR as the benchmark model. Benchmark model in the process 
of forecasting are used in the same frequency of low-frequency data, this paper in accordance 
with the mixed-frequency data regression forecasting model of the time interval from 2005 to 2019 
corn, soybean annual agricultural commodity futures prices and annual production data as a 
research sample of the benchmark model to establish the model for estimation, and out-of-sample 
forecasts of the annual production of corn and soybeans in 2020-2022.This paper compares the 
strengths and weaknesses of the corn AR(1)-UMIDAS (12,5) and soybean AR(2)-UMIDAS (12,7) 
models by the ratio of their forecasting accuracy (RMSE) to that of the benchmark model. As 
denotes the ratio of the RMSE of the maize AR(1)-UMIDAS(12,5) model to that of the 
corresponding benchmark model, in this paper b represents the two benchmark models, OLS and 
AR, respectively, and if the value is less than 1, it indicates that the prediction accuracy of the 
corn AR(1)-UMIDAS(12,5) model is better than the corresponding benchmark model; denotes the 
ratio of the RMSE of the soybean AR(2)-UMIDAS(12,7) model to the corresponding benchmark 
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model. If the value is less than 1, then it means that the prediction accuracy of the soybean AR(2)-
UMIDAS(12,7) model is better than the corresponding benchmark model. The out-of-sample 
forecasting accuracy (RMSE) of the benchmark model for the annual corn and soybean yields in 
2020-2022 and the ratio of the RMSE of the corn AR(1)-UMIDAS (12,5) and soybean AR(2)-
UMIDAS (12,7) models to the benchmark model are shown in Tables 5 and 6 below. In the 
comparison table of the two varieties of corn and soybean, it can be clearly seen that the 
prediction accuracy of the mixed-frequency data regression prediction model is significantly better 
than the benchmark model. 

Table 5 Comparative analysis of the maize AR(1)-UMIDAS(12,5)  
model with the baseline model 

baseline model RMSE 𝑐𝑅𝑀𝑆𝐸𝑏 

OLS 3.228498 0.080625728 

AR 3.829701 0.067968753 

 

Table 6 Comparative analysis of the soybean AR(2)-UMIDAS(12,7)  
model with the benchmark model 

baseline model RMSE 𝑠𝑅𝑀𝑆𝐸b 

OLS 37.34077 0.360139869 

AR 19.87546 0.67660824 

 

(3) Analysis of the results of the forward h-step mixing short-term forecasts for corn and soybeans  

On the basis of the above analysis, the corn AR(1)-UMIDAS (12,5) and soybean AR(2)-UMIDAS 
(12,7) models constructed in this paper have a comparative advantage in terms of out-of-sample 
prediction accuracy for the annual production of corn and soybean in 2020–2022. Therefore, this 
paper constructs forward h-step mixed-frequency data regression prediction models for corn 
AR(1)-UMIDAS(12,5,h) and soybean AR(2)-UMIDAS(12,7,h) on the basis of the corn AR(1)-
UMIDAS(12,5) and soybean AR(2)-UMIDAS(12,7,h) models, which not only make out-of-sample 
predictions but also apply the latest corn and soybean production data in a timely manner. It can 
also apply the latest monthly agricultural futures price data for corn and soybeans in time to 
provide real-time reports on annual corn and soybean production and constantly update and 
revise the forecasts of annual corn and soybean production.This paper compares the out-of-
sample forecasting accuracy of corn AR(1)-UMIDAS (12,5,h) and soybean AR(2)-UMIDAS 
(12,7,h) with the two benchmark models according to the above data division. From Table 7, it 
can be seen that when h=1 versus h=2, i.e., the prediction accuracy of the corn AR(1)-
UMIDAS(12,5,1) and corn AR(1)-UMIDAS(12,5,2) models is better; from Table 8, it can be seen 
that when h=1, i.e., the soybean AR(2)-UMIDAS(12,7,1) model has a better prediction accuracy, 
which indicates that the mixed-frequency data regression forecasting model has the comparative 
advantage of accuracy in short-term forecasting,and Liu Han and Liu Jinquan [4] have also 
concluded that the MIDAS model has the comparative advantage of accuracy in short-term 
forecasting of China's macroeconomic aggregates when using monthly investment, consumption, 
and export data to forecast quarterly GDP. This implies that when applying the mixed-frequency 
data regression forecasting model in and out of the annual production forecasts of agricultural 
products, the use of the latest monthly agricultural product futures price data will improve the 
forecasting accuracy of the model. 
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Table 7 Comparative analysis of the maize AR(1)-UMIDAS (12,5,h)  
model with the baseline model 

h RMSE   𝑐𝑅𝑀𝑆𝐸𝑂𝐿𝑆  𝑐𝑅𝑀𝑆𝐸𝐴𝑅 

1 2.0617 0.638594 0.538345 

2 2.7007 0.836519 0.705199 

3 6.6516 2.060277 1.736846 

4 12.991 4.023853 3.392171 

5 10.2876 3.186497 2.686267 

6 12.2451 3.792816 3.197404 

7 8.4794 2.626423 2.214115 

8 8.7195 2.700792 2.27681 

9 5.6555 1.751743 1.476747 

10 5.1292 1.588726 1.339321 

 

Table 8 Comparative analysis of the soybean AR(2)-UMIDAS (12,7,h) model with 
the benchmark model 

h RMSE  𝑠𝑅𝑀𝑆𝐸𝑂𝐿𝑆  𝑠𝑅𝑀𝑆𝐸𝐴𝑅 

1 15.8018 0.423178 0.795041 

2 28.1909 0.754963 1.418377 

3 36.8071 0.985708 1.851887 

4 31.8568 0.853137 1.602821 

5 35.3278 0.946092 1.777458 

6 31.2545 0.837007 1.572517 

7 27.1578 0.727296 1.366399 

8 20.5735 0.550966 1.035121 

9 26.3858 0.706622 1.327557 

10 29.2271 0.782713 1.470512 

Main findings 

This paper takes soybean and corn as examples of two agricultural products, according to the 
growth cycle of the agricultural products themselves, to prepare the agricultural products growth 
cycle futures data using a mixed-frequency data regression prediction model to empirically study 
whether agricultural products futures prices can predict the scale of agricultural production, 
compare the prediction accuracy with the baseline model, and come up with the following 
conclusions. 

1. Agricultural commodity futures price using a mixed-frequency data regression model can 
foresee the scale of China's agricultural commodity production, and using mixed-
frequency data for direct forecasting can explore the potential information contained in 
high-frequency data, thus improving forecasting accuracy. 

1. 2.Monthly agricultural futures prices have both positive and negative effects on the 
annual production of the relevant agricultural products; specifically, monthly agricultural 
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futures prices have a negative effect on the annual production of the corresponding 
agricultural products in the period of 3-5 months before the harvest, and monthly 
agricultural futures prices have a positive effect on the annual production of the relevant 
agricultural products after May. 

2. Mixed-frequency forecasting using agricultural cycle futures price data can predict the 
scale of agricultural production months in advance before the release of authoritative 
data, thus providing a data reference and decision-making basis for agricultural 
producers, agriculture-related enterprises, and even government agencies. 
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