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Abstract 
A fairly common approach to evaluate if a given time series 𝑌𝑡+1 is predictable, compares the 

Mean Squared Prediction Error (MSPE) of a plausible predictor for 𝑌𝑡+1 and the MSPE of a naïve 
benchmark like a constant forecast or the historical average of the predictand, which display zero 
or a small covariance with the target variable. If the MSPE of the plausible predictor is lower than 
that of the benchmark, 𝑌𝑡+1 is considered predictable, otherwise is considered unpredictable. This 
intuitive and standard approach might not be truly capturing the essence of predictability, which 
in words of some authors refers to a notion of dependence between the target variable and 
variables or events that happened in the past. In particular, when the plausible forecast under 
evaluation is inefficient, it might face a paradoxical situation:  On the one hand, it could have a 
strong and positive correlation with the target variable, much greater than the correlation of the 
benchmark with the same target variable. Yet, on the other hand, it could be outperformed in 
terms of MSPE by the same naïve benchmark. We propose to evaluate predictability directly, with 
a simple test based on the covariance between the forecast and the target variable. Using Monte 
Carlo simulations we study size and power of three variations of this test. In general terms, they 
all behave reasonably well. We also compare their behavior with a traditional test of equality in 
MSPE. We show that our covariance tests can detect predictability even when MSPE 
comparisons do not. Finally, we illustrate the relevance of our observation when forecasting 
monthly oil returns with a forecast based on the Chilean peso. 
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1. Introduction 

A fairly common approach to evaluate if a given time series 𝑌𝑡+1 is predictable, compares the 

Mean Squared Prediction Error (MSPE) of a plausible predictor for 𝑌𝑡+1and the MSPE of a naïve 

benchmark displaying zero or a small covariance with the target variable. In other words, a 
benchmark consistent with the notion of unpredictability for 𝑌𝑡+1

4. Typically the naïve benchmark 
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is a constant forecast or some sort of historical average of the predictand.  If the MSPE of the 
plausible predictor is lower than that of the benchmark, the series is said to be predictable, 
otherwise, it is said to be unpredictable (at least relative to the information set used to build the 
plausible forecast). One problem with this intuitive and standard approach is that it might not be 
truly capturing the essence of predictability, which in the words of some authors, refers to a notion 
of dependence between the predictand and variables or events that happened in the past.  

For instance, Diebold and Kilian (2001) mention: “The extent of a series´ predictability depends 
on how much information the past conveys regarding future values of this series;” Diebold and 
Kilian (2001) page 657. While the same authors mention that “It is natural and informative to judge 
forecasts by their accuracy” Diebold and Kilian (2001) page 657, accuracy and predictability are 

different, albeit, related concepts. The first quote of Diebold and Kilian (2001) claims that 
predictability is implicitly defined as a connection between past information and future values of a 
series. Similarly, Clements and Hendry (1998) make use of the definition of statistical 
independence of a random variable, relative to an information set, to define their notion of 
unpredictability. If the conditional and unconditional distribution of the target variable are the 
same, then this variable is considered unpredictable, at least with respect to the available 
information set. The authors also generalized this definition to the case of mean unpredictability 
and variance unpredictability, but the basic notion is the same. 

So, both Diebold and Kilian (2001) and Clements and Hendry (1998) base their core notions of 
predictability on the connection between past and future and not on a measure of accuracy per 
se. In particular, when the plausible forecast under evaluation is inefficient, it might face a 
paradoxical situation:  On the one hand, it could have a strong and positive correlation with the 
target variable, much greater than the correlation of the benchmark with the same target variable. 
Yet, on the other hand, it could be outperformed in terms of MSPE by the same naïve benchmark.   

In this paper, we propose to evaluate predictability in the simplest possible way: with a test based 
on the covariance between the forecast and the target variable5. We study size and power of 
three versions of such a test via Monte Carlo simulations. In general terms, they all behave 
reasonably well. We also compare their behavior with traditional tests of equality in MSPE and 
show that they can provide very different results. To be more precise: when the plausible forecast 
is Mincer and Zarnowitz (1969) efficient, it is expected that a positive covariance with the target 
variable will also lead to a lower MSPE relative to that of the naïve population mean forecast. 
Nevertheless, as shown by Pincheira and Hardy (2024a), if the plausible forecast is not efficient, 
a positive covariance with the target variable, which clearly indicates predictability, does not 
necessarily imply a lower MSPE relative to a naïve benchmark.  

We illustrate the relevance of our observation with an out-of-sample exercise in which monthly oil 
returns are predicted with semiannual returns of a commodity-currency.  Despite the strong 
correlation with future oil returns, the MSPE associated to this interesting forecast is higher to that 
of naïve benchmarks which in turn display little or no covariance at all with the target variable. 
The same situation happens when forecasting monthly returns of propane and heating oil.  

The rest of this paper is organized as follows. In section 2 we show simple examples in which 
forecasts, strongly correlated with the target variable, do not fare well in terms of MSPE compared 
to naïve counterparts with no dependence whatsoever with the predictand. In Section 3 we 
present the tests that we will use to evaluate the covariance between the target value and the 
forecast itself. We also evaluate their size and power with Monte Carlo simulations. In section 4 
we illustrate these paradoxical results with empirical applications. Finally, section 5 concludes.  

                                                           
5 Our focus on developing a dependency test rather than a test based on forecast accuracy, is similar in spirit 

to the approach followed by Pesaran and Timmermann (1992, 2009), although, of course, in a somewhat 
different context.    
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2.  Predictability vs Forecast Accuracy 

2.1 Simple examples 

In this section we illustrate with simple examples that predictability might not be associated to 
reductions in MSPE relative to a naïve and independent benchmark. In all these three examples 
our candidate forecasts share a common feature: Mincer and Zarnowitz (1969) inefficiency.  Our 
discussion here follows the line of "The MSPE Paradox" depicted in Pincheira and Hardy (2024a, 
2024b).  

Let 𝑌𝑡 be a mean zero target variable with positive variance. At time 𝑡, we have two competing 
forecasts 𝑋𝑡−1  and 𝑍𝑡−1  for 𝑌𝑡 . It is important to notice that both 𝑋𝑡−1  and 𝑍𝑡−1  are variables 
constructed with information previous to time t and that they are taken as primitives (hence, we 

are not concerned here about parameter uncertainty). Let us also assume that the vector 
(𝑌𝑡, 𝑋𝑡−1, 𝑍𝑡−1)′ has finite second moments and is weakly stationary. For clarity of exposition, we 
will drop the sub-indexes t and t-1 hereafter.  

Example 1: Let us consider the case in which 𝐸(𝑌) = 𝐸(𝑋) = 0  and Z is a zero-forecast. 

Consequently 𝑉(𝑍) = 𝐶𝑜𝑣(𝑌, 𝑍) = 𝐸(𝑍| |2) = 0.  Furthermore, let us also assume that V(X) = 

V(Y) > 0 and that 𝐶𝑜𝑣(𝑌, 𝑋) = 0.5𝑉(𝑌) > 0 so that we have 𝐶𝑜𝑟𝑟(𝑌, 𝑋) = 0.5. It is straightforward 

to see that the covariance matrix of the (Y,X) vector is positive-definite and that there is a strong 
connection between forecast X and the target variable Y, so that Y is predictable. Nevertheless, 
both forecasts Z and X will have the same MSPE:  

∆𝑀𝑆𝑃𝐸 ≡ 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍 = 𝐸(𝑌 − 𝑋)
2 − 𝐸(𝑌 − 𝑍)2 

∆𝑀𝑆𝑃𝐸 = 𝑉(𝑌 − 𝑋) − 𝑉(𝑌) = 𝑉(𝑌) + 𝑉(𝑋) − 2𝐶𝑜𝑣(𝑌, 𝑋) − 𝑉(𝑌) = 0 

So, by looking at MSPE differentials only, we would conclude that forecast X is not useful to 
predict Y, or even worse, if for some reason X is expected to be the best forecast for Y, we could 
take one step further and conclude that Y is unpredictable. Yet the strong correlation between X 
and Y says otherwise. 

The key problem here is that X is inefficient as its forecast error is also correlated with X: 

𝐶𝑜𝑣(𝑌 − 𝑋,𝑋) = 𝐶𝑜𝑣(𝑌, 𝑋) − 𝑉(𝑋) = 0.5𝑉(𝑌) − 𝑉(𝑌) = −0.5𝑉(𝑌) < 0 

The use of MSPE in this case, indicates that X and the zero forecast are predictors that on 
average fare equally well in terms of accuracy, despite the fact that the zero forecast is totally 
independent of the target variable, while X has a strong connection with it.  Unfortunately, in this 
example, MSPE comparisons would fail to detect the usefulness of forecast X, due to its sizable 
correlation with its own forecast error. 

Example 2: Consider the same example 1 with a minor variation: now 𝐶𝑜𝑣(𝑌, 𝑋) = 0.25𝑉(𝑌) > 0. 

Then we will have a more extreme situation than before, as the useful forecast X will be 
outperformed in terms of MSPE by the naïve zero forecast: 

∆𝑀𝑆𝑃𝐸 ≡ 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍 = 𝐸(𝑌 − 𝑋)
2 − 𝐸(𝑌 − 𝑍)2 

𝑉(𝑌 − 𝑋) − 𝑉(𝑌) = 𝑉(𝑌) + 𝑉(𝑋) − 2𝐶𝑜𝑣(𝑌, 𝑋) − 𝑉(𝑌) = 0.5𝑉(𝑌) > 0 

So, by looking at MSPE differentials only, we would conclude that forecast X is no useful to predict 
Y, and as before, we could even conclude that Y is unpredictable. Yet, the strong correlation 
between X and Y again proves that this conclusion would be incorrect.   

Example 3: Let us now consider a case in which 𝐸(𝑌) = 𝐸(𝑋) > 0 and Z is a zero-forecast. As 

usual 𝑉(𝑍) = 𝐶𝑜𝑣(𝑌, 𝑍) = 𝐸(𝑍| |2) = 0, but differently from the previous two examples, now the 

zero forecast Z is biased. Furthermore, let us also assume that 0 < V(X) < 𝑚𝑖𝑛{[𝐸(𝑌)]2, 𝑉(𝑌)}, 
and that Y and X are independent random variables. This implies 𝐶𝑜𝑣(𝑌, 𝑋) = 0.  In this case it is 

clear that there is no connection between forecast X and the target variable Y so that Y is 
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unpredictable by any measurable function of X. Nevertheless this independent variable X will 
outperform the zero forecast in terms of MSPE: 

∆𝑀𝑆𝑃𝐸 ≡ 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍 = 𝐸(𝑌 − 𝑋)
2 − 𝐸(𝑌 − 𝑍)2 

𝑉(𝑌 − 𝑋) − 𝐸[𝑌2] = 𝑉(𝑌) + 𝑉(𝑋) − 2𝐶𝑜𝑣(𝑌, 𝑋) − 𝐸[𝑌2] 

𝑉(𝑌) + 𝑉(𝑋) − 𝐸[𝑌2] = 𝑉(𝑋) − [𝐸(𝑌)]2 < 0 

So, by looking at MSPE differentials only, we would conclude that X outperforms the naïve zero 
forecast and from that point of view we could say that Y is predictable6. Yet, X and Y are 
independent random variables that have no connection whatsoever. Here the comparison in 
terms of MSPE is correct but it is only driven by bias. As both forecasts are independent with Y, 
the only reason why X outperforms Z is because it has a lower bias. Y is unpredictable by X, yet 
this usual comparison of MSPE differentials is unable to detect this important result.  

2.2 A slightly more general case 

While examples 1-3 clearly illustrate that predictability might not be strictly related to forecast 
accuracy in terms of MSPE, we are particularly interested in cases in which a forecast X, positively 
correlated with Y, is less accurate than the naïve population mean forecast for Y.  So, let us now 
show a slightly more general picture of the problem. We will analyze the case in which Y and X 
have positive variances but Z is just a constant c=E(Y). Here, we will have that Z is an unbiased 
and efficient forecast for Y.   

It is straightforward to show that:  

𝑀𝑆𝑃𝐸𝑋 ≡ 𝐸(𝑌 − 𝑋)
2 = 𝑉(𝑌 − 𝑋) + [𝐸(𝑌 − 𝑋)]2 = 𝑉(𝑌) + 𝑉(𝑋) − 2𝐶𝑜𝑣(𝑌, 𝑋) + [𝐸(𝑌 − 𝑋)]2 

𝑀𝑆𝑃𝐸𝑍 ≡ 𝐸(𝑌 − 𝑍)
2 = 𝐸(𝑌 − 𝐸(𝑌))

2
= 𝑉(𝑌) 

Suppose ∆𝑀𝑆𝑃𝐸 ≡ 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍= 0, so that by simply looking at MSPE differentials we would 

conclude that Y is not predictable by X. In this case we would have that 

0 = 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍 = 𝑉(𝑌) + 𝑉(𝑋) − 2𝐶𝑜𝑣(𝑌, 𝑋) + [𝐸(𝑌 − 𝑋)]
2 − 𝑉(𝑌) 

0 = ∆𝑀𝑆𝑃𝐸 = 𝑉(𝑋) − 2𝐶𝑜𝑣(𝑌, 𝑋) + [𝐸(𝑌 − 𝑋)]2 

Or 

 𝐶𝑜𝑣(𝑌, 𝑋) =
𝑉(𝑋)+[𝐸(𝑌−𝑋)]2

2
> 0  (1) 

So equality in MSPE between forecast X and the naïve forecast Z is perfectly compatible with a 
positive covariance between X and the predictand.   

Again, this is possible as long as X is inefficient. Otherwise we would have 𝐶𝑜𝑣(𝑌, 𝑋) = 𝑉(𝑋) and 

𝐸(𝑋) = 𝐸(𝑌) and the MSPE of forecast X would have been lower than V(Y): 

∆𝑀𝑆𝑃𝐸 ≡ 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍 = 𝑉(𝑌) − 𝑉(𝑋) − 𝑉(𝑌) = −𝑉(𝑋) < 0 

This again indicates that predictability might be at odds with forecast accuracy when one of the 
forecasts in the competition is inefficient.  

By looking at these very simple derivations it is clear that if a researcher is interested in detection 
of predictability, he/she should look beyond forecast accuracy unless he/she could make sure 
that all the forecasts under analysis satisfy Mincer-Zarnowitz efficiency. Yet, from our literature 
review, we have observed that violations of efficiency are fairly common7. Furthermore, it is also 

                                                           
6 This would be the case if the researcher believes that the unconditional expectation of Y is zero.  
7 Deviations from efficiency are found across multiple variables in a number of articles. See for instance, Ince 

and Molodtsova (2017); Joutz and Stekler (2000); Ang, Bekaert and Wei (2007); Patton and Timmermann 
(2012); Nordhaus (1987), Pincheira, Bentancor and Hardy (2023) and  Pincheira (2012, 2010) just to 
mention a few.  
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frequent to find papers do not even mentioning analyses of forecast efficiency. In light of this 
evidence, we think that it is relevant to explore predictability directly, by measuring the degree of 
dependence between the forecasts and the target variable. In the next section, we analyze size 
and power of three simple tests evaluating the covariance between a target variable and a 
forecast.  

3. Tests and Monte Carlo Simulations 

3.1 Our null hypothesis 

We focus on the following hypotheses: 

𝐻0: 𝐶𝑜𝑣(𝑌, 𝑋) = 0    (2) 

𝐻𝐴: 𝐶𝑜𝑣(𝑌, 𝑋) > 0   (3) 

Our null hypothesis posits no linear relationship between the forecast and the target variable. No 
rejection of the null is consistent with the absence of predictability for Y, at least with information 
based on X. On the contrary, rejection of the null is a clear indication of predictability, as the 
forecast X is linearly related to the target variable.  

A few observations are worth mentioning:  First, we focus on one-sided tests because we expect 
a reasonable forecast to be positively related to the target variable. In case of a negative and 
significant covariance, the researcher may consider the obvious multiplication of his/her favorite 
forecast by minus one. Second,  as the covariance of a random variable with a constant is exactly 
zero, our null hypothesis could be interpreted as a comparison between the covariance of the 
target variable with forecast X and the covariance of the target variable with a constant forecast. 
This includes the traditional zero forecast or the unknown population mean of the target variable. 
Under quadratic loss, the population mean is the optimal long-term forecast of the stationary 
target variable Y. So we indeed will be capturing the idea of Diebold and Kilian (2001), who 
propose to evaluate the relative accuracy of short versus long-term forecasts. Besides, a constant 
forecast will be optimal even in the short-run for a martingale in difference process, which is widely 
used in economics and finance. Third, our approach is also consistent with the definition of 
unpredictability proposed by Clements and Hendry (1998). In their definition, mean 
unpredictability relative to the information contained in X is expressed in terms of the equality 

𝐸(𝑌|𝑋) = 𝐸(𝑌) 

This implies that 𝐶𝑜𝑣(𝑌, 𝑋) = 𝐶𝑜𝑣(𝑌, 𝐸(𝑌|𝑋)) = 𝐶𝑜𝑣(𝑌, 𝐸(𝑌)) = 0. And we can apply the same 

argument for their definition of variance unpredictability.  

Fourth, if forecast X is Mincer-Zarnowitz efficient, then rejection of our null hypothesis in (2) also 
implies that forecast X outperforms the population mean forecast, the zero forecast and any other 
possible constant forecast under quadratic loss. If our null hypothesis (2) is correct, however, and 
we assume that forecast X has positive variance, the only direct implications are that forecast X 
is outperformed in terms of MSPE by the population mean forecast and that X cannot be Mincer-
Zarnowitz efficient. To see the first point notice that  

𝑀𝑆𝑃𝐸𝑋 = 𝐸[𝑌 − 𝑋]
2 = 𝑉(𝑌 − 𝑋) + (𝐸[𝑌 − 𝑋])2 = 𝑉(𝑌) + 𝑉(𝑋) + (𝐸[𝑌 − 𝑋])2 > 𝑉(𝑌) = 𝑀𝑆𝑃𝐸𝑍 

Notice also that Mincer Zarnowitz efficiency implies 𝐶𝑜𝑣(𝑌, 𝑋) = 𝑉(𝑋), which, under the null of a 

zero covariance between X and Y, is an open contradiction with the positive variance assumption 
for X.  

3.2 Our tests 

We use three different statistics to test our null hypothesis. The first two are obtained in regression 
form. They require the following assumptions: 
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A1) Strong stationarity for the pair (𝑌𝑡,𝑋𝑡). 

A2) Finite second moments for the vector (𝑌𝑡,𝑋𝑡). 

A3) 𝐸|𝑌𝑡|
𝑟 < ∞, 𝐸|𝑋𝑡|

𝑟 < ∞, for some 𝑟 > 4.   

A4) The mixing coefficients  𝛼(𝑙) for the pair (𝑌𝑡,𝑋𝑡) are such that ∑ 𝛼(𝑙)1−
4

𝑟
∞
𝑙=1 < ∞. 

 

These assumptions are necessary to obtain asymptotic normality of the OLS estimates in the 
simple regression frameworks that we use next. See Hansen (2022), page 501.  

 

1) We consider the following regression: 

𝑌 = 𝑎 + 𝑏𝑋 + 𝑒, 𝐸(𝑒) = 𝐸(𝑒𝑋) = 0 

which implies 𝑏 =
𝐶𝑜𝑣(𝑌,𝑋)

𝑉(𝑋)
. Under assumptions A1)-A4), we know that the simple t-statistic 

associated to the b parameter, computed with HAC standard errors, will follow a standard 
normal distribution, so we use this simple t-statistic as a first approach8. We will refer to this 
test simply as “regression test”.  

 

2) We also consider the inverse regression: 

𝑋 = 𝛼 + 𝛽𝑌 + 𝜀, 𝐸(𝜀) = 𝐸(𝜀𝑋) = 0 

  

Under assumptions A1)-A4), we know that the simple t-statistic associated to the 𝛽 

parameter, computed with HAC standard errors, will follow a standard normal distribution, so 
we use this simple t-statistic as a second approach using HAC standard errors according to 
Newey and West (1987, 1994). Notice also that this 𝛽 parameter could be expressed as  

 

𝛽 =
𝐶𝑜𝑣(𝑌, 𝑋)

𝑉(𝑌)
 

When X is Mincer-Zarnowitz efficient, we will have that 𝐶𝑜𝑣(𝑌, 𝑋) = 𝑉(𝑋), so in this case 𝛽 can 

have the interpretation of a coefficient of determination, as under efficiency of X, 𝛽 represents the 

share of V(Y) “explained” by forecast X, which is a textbook definition of a coefficient of 
determination. Consequently, we will refer this test as a R2 test.  

3) We consider the following statistic: 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑒𝑠𝑡 = √𝑇
𝑟

√𝛥ℎ′𝛥𝑔′ ∑ 𝛺𝑗
∞
𝑗=−∞ 𝛥𝑔𝛥ℎ

 

where 𝛺𝑗 =

[
 
 
 
 
 
 
𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡

2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡
2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑋𝑡−𝑗)

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡
2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡

2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑌𝑡−𝑗)

𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑗
2 ) 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡−𝑗

2 ) 𝐶𝑜𝑣(𝑋𝑡
2, 𝑋𝑡−𝑗

2 ) 𝐶𝑜𝑣(𝑌𝑡
2, 𝑋𝑡−𝑗

2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑋𝑡−𝑗
2 )

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−𝑗
2 ) 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑗

2 ) 𝐶𝑜𝑣(𝑋𝑡
2, 𝑌𝑡−𝑗

2 ) 𝐶𝑜𝑣(𝑌𝑡
2, 𝑌𝑡−𝑗

2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑌𝑡−𝑗
2 )

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−𝑗𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑗𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡
2, 𝑌𝑡−𝑗𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡

2, 𝑌𝑡−𝑗𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑌𝑡−𝑗𝑋𝑡−𝑗)]
 
 
 
 
 
 

 

                                                           
8 HAC standard errors are computed according to Newey and West (1987, 1994). 
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𝛥𝑔 =

[
 
 
 
 
−2𝑚𝑋 0 −𝑚𝑌

0 −2𝑚𝑌 −𝑚𝑋

1 0 0
0 1 0
0 0 1 ]

 
 
 
 

 

𝛥ℎ = [

0
0
1

𝑆𝑌𝑆𝑋

] 

T represents the total number of observations, 𝑟 denotes the sample correlation between X and 

Y and 𝑚𝑌 and 𝑚𝑋 are the sample means of the target variable Y and the forecast X respectively. 

Finally, 𝑆𝑋 and 𝑆𝑌 are the sample standard deviations of X and Y respectively. To estimate the 

long run variance  ∑ 𝛺𝑗
∞
𝑗=−∞  we use the traditional consistent estimator of Newey and West 

(1987). 

Using the multivariate Delta method and mild assumptions, it is possible to show that under the 
null hypothesis of a zero correlation between forecast X and the target variable Y, the Correlation 
test is asymptotically standard normal. The formal derivation of the test is in Appendix A1.  We 
will simply label this test as “Correlation test”.  

Notice that this test could be written equivalently in a simpler way, provided that 𝑆𝑋 and 𝑆𝑌 are 

consistent estimators of the standard deviations of X and Y respectively.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑒𝑠𝑡 =
√𝑇 𝑆𝑋𝑌 (𝑆𝑋𝑆𝑌)⁄

(𝑆𝑋𝑆𝑌)
−1√𝛻𝑔′∑ 𝛺𝑗

∞
𝑗=−∞ 𝛻𝑔

 

  

where 𝛺𝑗 = [

𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑋𝑡−𝑗)

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑌𝑡−𝑗)

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−𝑗𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑋𝑡−𝑗𝑌𝑡−𝑗)

]; 𝛻𝑔 [

𝑚𝑋

𝑚𝑌

𝑚𝑌𝑋

] = [
−𝑚𝑌

−𝑚𝑋

1
] 

Here 𝑆𝑋𝑌 is the sample covariance between the X and Y. To estimate the long run variance  
∑ 𝛺𝑗
∞
𝑗=−∞  we use the traditional consistent estimator of Newey and West (1987). 

3.3 Monte Carlo Simulations 

Here we explore size and power of our tests via Monte Carlo simulations.  We consider two 
different DGPs calibrated to match linear models in which commodity returns are being predicted 
with either returns of a commodity-currency or with their own lags.  

DGP1: In this DGP we generate data for the predictand 𝑌𝑡+1 and for our forecast 𝑋𝑡  using a 

stationary and Gaussian VAR(1) process with a diagonal autoregressive matrix. For all practical 
matters, our DGP looks like two separate AR(1) models for each variable:  

𝑌𝑡+1 = 𝛼𝑌 + 𝛾𝑌𝑌𝑡 + 𝜀𝑡+1
𝑌        (4) 

𝑋𝑡 = 𝛼𝑋 + 𝛾𝑋𝑋𝑡−1 + 𝜀𝑡
𝑋         (5) 

Where (
𝜀𝑡+1
𝑌

𝜀𝑡
𝑋 )  is a Gaussian two dimensional with noise process with variance 𝑉 =

[
𝜎𝜀𝑌
2 𝜌𝜎𝜀𝑌𝜎𝜀𝑋

𝜌𝜎𝜀𝑌𝜎𝜀𝑋 𝜎𝜀𝑋
2 ], and 𝜌 = 𝐶𝑜𝑟𝑟(𝜀𝑡+1

𝑌 , 𝜀𝑡
𝑋).  

Notice that  
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𝐶𝑜𝑣(𝑌𝑡+1; 𝑋𝑡) = 𝐶𝑜𝑣(𝛼𝑌 + 𝛾𝑌𝑌𝑡 + 𝜀𝑡+1
𝑌 ; 𝛼𝑋 + 𝛾𝑋𝑋𝑡−1 + 𝜀𝑡

𝑋) = 𝛾𝑌𝛾𝑋𝐶𝑜𝑣(𝑌𝑡; 𝑋𝑡−1) + 𝐶𝑜𝑣(𝜀𝑡+1
𝑌 ; 𝜀𝑡

𝑋) 

Our stationary assumption implies that  

𝐶𝑜𝑣(𝑌𝑡+1; 𝑋𝑡) =
𝜌𝜎𝜀𝑌𝜎𝜀𝑋

1 − 𝛾𝑌𝛾𝑋
 

Besides 𝑀𝑆𝑃𝐸 = 𝐸(𝑌𝑡+1 − 𝑋𝑡)
2 = 𝑉𝑎𝑟(𝑌| |𝑡 + 1 − 𝑋𝑡) + 

𝑀𝑆𝑃𝐸 = 𝐸(𝑌𝑡+1 − 𝑋𝑡)
2 = 𝑉𝑎𝑟(𝑌| |𝑡 + 1) + 𝑉𝑎𝑟(𝑋𝑡) − 2𝐶𝑜𝑣(𝑌𝑡+1; 𝑋𝑡) + 

𝑀𝑆𝑃𝐸 =
𝜎𝜀𝑌
2

1 − 𝛾𝑌
2 +

𝜎𝜀𝑋
2

1 − 𝛾𝑋
2 − 2𝐶𝑜𝑣(𝑌𝑡+1, 𝑋𝑡) + [

𝛼𝑌
1 − 𝛾𝑌

−
𝛼𝑋

1 − 𝛾𝑋
]
2

 

Under the null hypothesis of zero correlation between the forecast and the target variable we 

will have 𝑀𝑆𝑃𝐸 =
𝜎
𝜀𝑌
2

1−𝛾𝑌
2 +

𝜎
𝜀𝑋
2

1−𝛾𝑋
2 + [

𝛼𝑌

1−𝛾𝑌
−

𝛼𝑋

1−𝛾𝑋
]
2
>

𝜎
𝜀𝑌
2

1−𝛾𝑌
2 ≡ 𝑀𝑆𝑃𝐸𝜇 

Where 𝑀𝑆𝑃𝐸𝜇 denotes the MSPE of predicting 𝑌𝑡+1 with its population mean.  

This result is interesting, as it says that when the forecast 𝑋𝑡  is uncorrelated with the target 

variable, its MSPE will be higher than when predicting 𝑌𝑡+1 with its population mean. We can also 

see that when the covariance between the forecast and the target variable increases, there is a 
good chance for the forecast 𝑋𝑡 to outperform the population mean in terms of MSPE.  

In our simulations, we calibrate the parameters of DGP1 to match a model in which 𝑌𝑡+1 
represents monthly returns in WTI oil price and 𝑋𝑡 represents the first monthly lag of semiannual 
Chilean Peso returns (multiplied by minus one). According to Alquist, Kilian and Vigfusson (2013) 
commodity–currencies have an important ability to predict oil prices. Pincheira, Bentancor, Hardy 
and Jarsún (2022) corroborate this finding using lags of long returns of the Chilean Peso, a 
commodity-currency strongly and negatively correlated to copper prices. Table 1 next reports our 
estimated parameters.  

 

Table 1: Estimated parameters for DGP1 

𝛼𝑌 𝛾𝑌 𝛼𝑋 𝛾𝑋 𝜌 𝜎𝜀𝑌
2  𝜎𝜀𝑋

2  

0.280 0.147 0.205 0.835 0.130 119.858 23.136 

Notes: Table 1 reports estimates of the parameters in expressions (4) and (5) in the text. To obtain these 
estimates we consider monthly data of WTI oil price and of the Chilean Peso from January 2000 until 

February 2024. 𝑌𝑡+1in expression (4) represents monthly returns of WTI oil price, computed as the log 
difference between the closing oil price on the last day of month t+1, and the closing oil price on the last 

day of month t.  𝑋𝑡 in expression (5) represents minus one times the semiannual log difference in the 
Chilean peso, computed as the log difference of the closing price of the Chilean Peso from the last day 
in month t, and the closing price of the Chilean peso from the last day of month t-6. All our data is 
obtained at a daily frequency from Refinitiv Datastream.  

 

On the one hand, from our data we get an estimate of 𝜌 = 0.13 which is consistent with a positive 

correlation of roughly 8% between our forecast and the predictand. Therefore, in terms of our 
main null and alternative hypotheses (2) and (3) our estimates indicate a situation which is more 
likely to be consistent with the alternative hypothesis in (3).  

On the other hand, our same estimates from Table 1 imply a RMSPE (Root Mean Squared 
Prediction Error) of roughly 13.6 for forecast 𝑋𝑡 , which is higher than the implied standard 

deviation of the target variable of 11.07, which coincides with the RMSPE of predicting with the 
population mean. So, from a traditional point of view of testing equality in MSPE, our estimated 
parameters suggest that a null of equality in MSPE would be rejected in favor of the population 
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mean forecast. In other words our computation of correlations and MSPE go in opposite 
directions, as in the MSPE Paradox discussed by Pincheira and Hardy (2024a).   

To explore size and power of our tests we consider different values of the 𝜌 parameter. For size, 

we set 𝜌 = 0, which implies a zero correlation between forecast 𝑋𝑡 and 𝑌𝑡+1. For experiments 

evaluating power we consider positive values for the 𝜌 parameter, which in turns translates into 
positive correlations between 𝑋𝑡 and 𝑌𝑡+1. While the main focus in our experiments is to evaluate 

the behavior of our three correlation tests, we also keep track of MSPE to evaluate the null of 
equality in MSPE associated to forecast 𝑋𝑡 and the population mean forecast. This allows us to 

compare the behavior of these two families of tests when trying to evaluate predictability: 
correlation-based tests and MSPE-based tests.  

We consider 5000 replications in each Monte Carlo simulation. Tables 2 and 3 show our results 
for two different sample sizes: T=200 and T=1000. Notice that this is a pure out-of-sample 
analysis, as we are generating both the target variable 𝑌𝑡+1 and the forecast 𝑋𝑡. Therefore there 

is no need to estimate parameters to generate our forecasts. This is a scenario in which forecasts 
are available naturally, as in the case of forecast surveys, financial variables that serve as leading 
indicators or private or public forecasts from international of domestic institutions, as Central 
Banks and the IMF.  We focus on one-step-ahead forecasts only leaving the analysis of multi-
step-ahead forecasts as an extension for further research.  

Table 2: Size and Power of our Correlation Tests when T=200 and nominal size is 10% 

𝜌 = 𝐶𝑜𝑟𝑟(𝜀𝑡+1
𝑌 , 𝜀𝑡

𝑋) 0 (Size) 0.13 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Theoretical 𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 0.000 0.081 0.124 0.186 0.248 0.310 0.372 0.434 0.496 0.558 

One sided regression test 0.118 0.419 0.649 0.879 0.981 1.000 1.000 1.000 1.000 1.000 

One sided R2 test 0.114 0.421 0.650 0.886 0.982 1.000 1.000 1.000 1.000 1.000 

One sided Correlation test 0.112 0.420 0.651 0.886 0.982 1.000 1.000 1.000 1.000 1.000 

Notes: The first row in Table 2 reports the theoretical correlation between forecast 𝑋𝑡 and 𝑌𝑡+1. The rest of the 
rows present rejection rates of the null hypothesis of zero covariance between forecast 𝑋𝑡 and 𝑌𝑡+1. 
These rejection rates are obtained across all our 5000 replications for a nominal size of 10%, when 
the sample size of our available data is 200. The first numerical column in Table 2 displays the 
empirical size of each test in the last three rows of the table.  

Table 3: Size and Power of our Correlation Tests when T=1000 and nominal size is 10% 

𝜌 = 𝐶𝑜𝑟𝑟(𝜀𝑡+1
𝑌 , 𝜀𝑡

𝑋) 0 (Size) 0.13 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Theoretical 𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 0.000 0.081 0.124 0.186 0.248 0.310 0.372 0.434 0.496 0.558 

One sided regression test 0.103 0.838 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

One sided R2 test 0.101 0.839 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

One sided Correlation test 0.101 0.838 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: The first row in Table 3 reports the theoretical correlation between forecast 𝑋𝑡 and 𝑌𝑡+1. The rest of the 
rows present rejection rates of the null hypothesis of zero covariance between forecast 𝑋𝑡 and 𝑌𝑡+1. 
These rejection rates are obtained across all our 5000 replications for a nominal size of 10%, when 
the sample size of our available data is 1000. The first numerical column in Table 3 displays the 
empirical size of each test in the last three rows of the table.  
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The first row (in bold) in Tables 2 and 3 displays the different values of the 𝜌 parameter that we 

consider in our simulations9. In the second row in the tables we see how the different values of 
the 𝜌 parameter generate different correlations between the target variable and our forecast 𝑋𝑡. 
In the rest of the rows in both tables we show rejection rates of the null hypothesis obtained for 
each test in our 5000 replications using a 10% significance level. When 𝜌 = 0, the correlation 

between our forecast and the target variable is exactly zero, so our null hypothesis (2) holds true. 
Consequently, rejection rates correspond to the size of the tests. In Table 2 we see that all three 
correlation tests are slightly oversized when T=200, as rejection rates are in the range between 
11% and 12%. As the sample size gets larger, Table 3 reveals that all three tests are very close 
to nominal size.  Interestingly, the best behavior in terms of size is achieved by the correlation 
test derived by the Delta method.  

The rest of the columns in Tables 2 and 3 show the power of the tests for different values of the 
correlation between the forecast and the target variable. As expected, with a larger sample size, 
all three tests display more power. It is interesting to note that even when T=200, all three tests 
are relatively powerful as it only takes a correlation of 0.31 between the forecast and the target 
variable to get a perfect rejection rate of the null hypothesis.  When T=1000, Table 3 reveals that 
it only takes a correlation of 0.186 to get full power. All in all our three tests seem to be powerful 
and correctly sized.  

Tables 4 and 5 show the RMSPE of our forecasts, the correlation of forecast 𝑋𝑡 with the target 

variable, rejection rates of our Correlation test computed with the Delta method and the traditional 
Diebold and Mariano (1995) and West (1996) test (henceforth DMW) of inequality in MSPE10. 

Here we use as a benchmark forecast the population mean of the target variable𝜇 =
𝛼𝑌

1−𝛾𝑌
 which 

is just a constant with zero covariance with the target variable. To be more precise, while the main 
focus of Tables 2 and 3 is on the power and size of our three correlation tests, in Tables 4 and 5 
we also consider the following null and alternative hypotheses of inequality in MSPE: 

H1: 𝑀𝑆𝑃𝐸𝜇 ≤ 𝑀𝑆𝑃𝐸𝑋     

H2: 𝑀𝑆𝑃𝐸𝜇 > 𝑀𝑆𝑃𝐸𝑋    

Where 𝑀𝑆𝑃𝐸𝜇 represents the MSPE resulting from the prediction of 𝑌𝑡+1 with its population mean, 

and 𝑀𝑆𝑃𝐸𝑋  represents the MSPE resulting from the prediction of 𝑌𝑡+1 with 𝑋𝑡 . Notice that for 

clarity of exposition, in Tables 4 and 5 we only include the correlation test derived with the Delta 
method11.  

Table 4: MSPE based test vs Correlation based test when T=200 and nominal size  
is 10%. 

𝜌 = 𝐶𝑜𝑟𝑟(𝜀𝑡+1
𝑌 , 𝜀𝑡

𝑋) 0.00 0.13 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean RMSPE 
benchmark 

11.055 11.055 11.055 11.055 11.055 11.055 11.055 11.055 11.055 11.055 

Mean RMSPE of 

Forecast 𝑋𝑡 
14.119 13.554 13.240 12.778 12.298 11.799 11.277 10.732 10.158 9.551 

                                                           
9 Tables 2-3 show results for several values of 𝜌 = 𝐶𝑜𝑟𝑟(𝜀𝑡+1

𝑌 , 𝜀𝑡
𝑋), including 𝜌 = 0.13, which is the estimate 

obtained from our data.  
10 We carried out the DMW test in the spirit of the article by Giacomini and White (2006). 
11 Those readers familiar with the nested model literature might be tempted to think that it would be more 

appropriate to consider tests like those of Clark and West (2006, 2007) or Clark and McCracken (2001). 
Yet, as we are not using models to build our forecasts, that is not necessary, so we simply compare MSPE 
between two forecasts with a DMW test using HAC standard errors according to Newey and West (1987, 
1994).  
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Theoretical 

𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 
0.000 0.081 0.124 0.186 0.248 0.310 0.372 0.434 0.496 0.558 

One sided DMW 
test 

0.000 0.000 0.000 0.000 0.002 0.016 0.086 0.279 0.641 0.949 

One sided 
Correlation test 

0.112 0.420 0.651 0.886 0.982 1.000 1.000 1.000 1.000 1.000 

Notes: Similar to Tables 2 and 3, the top row in Table 4 displays the different correlations 𝐶𝑜𝑟𝑟(𝜀𝑡+1
𝑌 , 𝜀𝑡

𝑋) that 
we use in our simulations. The rows under the labels “Mean RMSPE benchmark” and “Mean RMSPE 
of Forecast 𝑋𝑡 ” represents the average RMSPE obtained across our 5000 replications for the 
population mean benchmark and forecast 𝑋𝑡  respectively.  The row under the label “Theoretical 

𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡)” presents the theoretical correlation between forecast 𝑋𝑡 and the target variable. This 
row is exactly the same second row in Tables 2 and 3. The row under the label “One sided DMW test” 
presents rejection rates of the null on inequality in MSPE between the benchmark and forecast 𝑋𝑡. 
Rejection rates favor precisely this latter forecast 𝑋𝑡. The last row in Table 4 is just the same last row 
in Table 2. In all these exercises the nominal size is 10%, the number of replications is 5000 and the 
length of our data is T=200.  

Table 5: MSPE based test vs Correlation based test when T=1000 and nominal size  
is 10%. 

𝜌 = 𝐶𝑜𝑟𝑟(𝜀𝑡+1
𝑌 , 𝜀𝑡

𝑋) 0.00 0.13 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean RMSPE 
benchmark 

11.067 11.067 11.067 11.067 11.067 11.067 11.067 11.067 11.067 11.067 

Mean RMSPE of 

Forecast 𝑋𝑡 
14.133 13.570 13.256 12.795 12.317 11.819 11.299 10.754 10.180 9.572 

Theoretical 

𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 
0.000 0.081 0.124 0.186 0.248 0.310 0.372 0.434 0.496 0.558 

One sided DMW 
test 

0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.469 0.984 1.000 

One sided 
Correlation test 

0.101 0.838 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: This table presents the same information provided in Table 4. The only difference is that Table 5 
reports simulation results when our sample size is bigger, T=1000. 

 

From Tables 4 and 5 it is striking to see that MSPE differentials and correlations go in opposite 
directions. For instance, the null hypothesis of zero correlation between the forecast and the target 
variable holds true even though the RMSPE of the benchmark forecast is much lower than that 
of the 𝑋𝑡  forecast (11.055𝑣𝑠14.119 ∈ 𝑇𝑎𝑏𝑙𝑒4 ∧ 11.067𝑣𝑠14.133 ∈ 𝑇𝑎𝑏𝑙𝑒5).  In both Tables we 

show that out of the 5000 replications the DMW test cannot reject the null even once in favor of 
the forecast 𝑋𝑡  even though both predictors: the constant population mean and 𝑋𝑡  have zero 

covariance with the target variable.  

The rest of the columns in Tables 4 and 5 are even more interesting because they show cases 
with a positive correlation between the forecast 𝑋𝑡 and the target variable. In particular, whenever 

𝜌 > 0we see strong and positive correlations between 𝑋𝑡  and 𝑌𝑡+1 . Despite these important 

positive correlations we still observe a lower MSPE for the constant benchmark model whenever 
0 < 𝜌 < 0.7. Put differently, in all this range of values for 𝜌, the constant benchmark model is more 

accurate than 𝑋𝑡  in terms of MSPE, yet 𝑌𝑡+1  is clearly predictable by 𝑋𝑡, as they are strongly 

connected with relatively high correlations. This is another example in which MSPE comparisons 
fail to detect predictability. Here there is no one to blame. DMW does its duty and tends to correctly 
reject in favor of the forecast with a lower MSPE. Similarly, our correlation test does its duty also, 
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rejecting in favor of the forecast with a higher correlation. The problem again is that our forecast 
𝑋𝑡  is Mincer-Zarnowitz inefficient. In this scenario, traditional MSPE comparisons may fail to 

detect predictability as we saw earlier in our basic examples in section 2.  

DGP2: In this DGP we generate data for the predictand 𝑌𝑡+1 using a simple stationary AR(1) 

process: 

𝑌𝑡+1 = 𝛼𝑌 + 𝛾𝑌𝑌𝑡 + 𝜎𝑢𝑡+1       (6) 

Our main forecast 𝑋𝑡 is simply defined as the inefficient first lag of 𝑌𝑡+1. In other words: 𝑋𝑡 ≡ 𝑌𝑡. 

As in DGP1, here we calibrate the parameters of our simple model to match features of monthly 
returns of WTI oil. An important difference with DGP1 is that now our innovations 𝑢𝑡+1 are not 

Gaussian. They follow a t-student distribution with 4 degrees of freedom, so to give higher 
probability to extreme outcomes.  Table 6 next reports the parameters used in DGP2.  

Table 6: Estimated parameters for DGP2 

𝛼𝑌 𝛾𝑌 
𝜎 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 

0.282 0.147 7.79 4 

Notes: Table 6 reports estimates of the parameters in expression (6) in the text. To obtain these estimates 

we consider monthly data of WTI oil price from January 2000 until February 2024. 𝑌𝑡+1 in expression 
(6) represents monthly returns of WTI oil price, computed as the log difference between the closing 
oil price in the last day of month t+1, and the closing oil price in the last day of month t. All our data is 
obtained at a daily frequency from Refinitive Datastream.  

 

Just like in our exercises with DGP1, here we also consider 5000 replications in each Monte Carlo 
simulation. Tables 7 and 8 are akin to Tables 2 and 3 and show our results for two different sample 
sizes: T=200 and T=1000 when the nominal size of the tests is 10%. We focus on one-step-ahead 
forecast only, leaving the analysis of multi-step-ahead forecasts as an extension for further 
research.  

  Table 7: Size and Power of our Correlation Tests when T=200. Nominal size is 10%. 
DGP2 

𝛾𝑌 0 (Size) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean 𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 
-0.010 0.087 0.185 0.282 0.379 0.477 0.574 0.670 0.766 0.861 

One sided regression 
test 

0.115 0.420 0.790 0.954 0.993 0.999 1.000 1.000 1.000 1.000 

One sided R2 test 0.118 0.415 0.783 0.952 0.993 0.999 1.000 1.000 1.000 1.000 
One sided Correlation 
test 

0.107 0.401 0.767 0.952 0.992 0.999 0.999 1.000 1.000 1.000 

Notes: The last three rows in Table 7 show rejection rates for our three correlation tests and for different 

values of the parameter 𝛾𝑌  in DGP 2. These rejection rates are obtained across all our 5000 
replications for a nominal size of 10%, when the sample size of our available data is T=200. The first 
numerical column in Table 7 displays the empirical size of the tests. The first row in Table 7 reports 
the average across all our 5000 replications of the correlation between our forecast 𝑋𝑡 and the target 
variable.  
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  Table 8: Size and Power of our Correlation Tests when T=1000. Nominal size is 10%. 
DGP2 

𝛾𝑌 0 (Size) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean 𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 
-0.002 0.098 0.198 0.298 0.397 0.497 0.597 0.696 0.796 0.896 

One sided 
regression test 

0.106 0.951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

One sided R2 test 0.106 0.951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
One sided 
Correlation test 

0.103 0.951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: This table presents the same information provided in Table 7. The only difference is that Table 8 
reports simulation results when our sample size is bigger, T=1000. 

 

The first row in Tables 7 and 8 displays the different values of the 𝛾𝑌 parameter that we consider 
in our simulations. In our simple AR(1) model, this parameter coincides with the correlation 
between our forecast 𝑋𝑡 and the target variable. In the second row in the tables we report the 

average correlation 𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) across our 5000 replications. We see that this statistic is pretty 

close to the actual population correlation 𝛾𝑌, especially in Table 8 when T=1000.   

In the rest of the rows in both tables we show the rejection rates of the null hypothesis using a 
10% significance level. When 𝛾𝑌= 0 the correlation between our forecast and the target variable 

is exactly zero, so our null hypothesis (2) holds true. Consequently, rejection rates correspond to 
the size of the tests. In Table 7 we see that all three correlation tests are mildly oversized when 
T=200, as rejection rates are in the range between 10% and 12%. As the sample size gets larger, 
Table 8 reveals that all three tests are very close to nominal size.  Just as in the case of DGP1, 
the best behavior in terms of size is achieved again by the correlation test derived by the Delta 
method.  

The rest of the columns in Tables 7 and 8 show the power of the tests for different values 𝛾𝑌 > 0. 

As expected, with a larger sample size, all three tests display more power. Again, even when 
T=200, all three tests are relatively powerful as it only takes a correlation of 0.4 between the 
forecast and the target variable to get an almost perfect rejection rate of the null hypothesis.  
When T=1000, Table 8 reveals that it only takes a correlation of 0.2 to get full power. This is 
important because we are using a DGP with fat tails. Tables 7 and 8 show that this is not a serious 
obstacle for the correlation tests as they seem to be correctly sized and relatively powerful, even 
with moderate sample sizes of T=200.   

Tables 9 and 10 show the RMSPE of our forecasts, the mean correlation of forecast 𝑋𝑡 with the 

target variable across our 5000 replications, rejection rates of our Correlation test computed with 
the Delta method and the traditional DMW test of inequality in MSPE (H1 vs H2). As in the case 

with DGP1 we use as a benchmark forecast the population mean of the target variable𝜇 =
𝛼𝑌

1−𝛾𝑌
 . 

Notice that for clarity of exposition in Tables 9 and 10 we only include the correlation test derived 
with the Delta method.  

Tables 9 and 10 show clearly that the MSPE Paradox emerges whenever 0 < 𝛾𝑌 ≤ 0.5. For 

instance, the null hypothesis of zero correlation between the forecast and the target variable holds 
true even though the RMSPE of the benchmark forecast is much lower than that of the 𝑋𝑡 forecast 
(10.858𝑣𝑠15.342 ∈ 𝑇𝑎𝑏𝑙𝑒9 ∧ 10.978𝑣𝑠15.527 ∈ 𝑇𝑎𝑏𝑙𝑒10). In both Tables we show that out of the 

5000 replications the DMW test cannot reject the null even once in favor of the forecast 𝑋𝑡 even 

though both predictors: the constant population mean and 𝑋𝑡 have zero covariance with the target 

variable.  
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Table 9: MSPE based test vs Correlation based test when T=200, nominal size is 10%. 
DGP2 

𝛾𝑌 0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean RMSPE 
benchmark 

10.858 10.911 11.079 11.377 11.838 12.522 13.542 15.143 17.956 24.458 

Mean RMSPE 

of Forecast 𝑋𝑡 
15.342 14.629 14.007 13.459 12.970 12.532 12.135 11.774 11.444 11.141 

Mean 

𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 
-0.010 0.087 0.185 0.282 0.379 0.477 0.574 0.670 0.766 0.861 

One sided DMW 
test 

0.000 0.000 0.000 0.000 0.006 0.088 0.457 0.868 0.988 0.999 

One sided 
Correlation test 

0.103 0.951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
          

Notes: This table presents the same information provided in Table 4 with only two differences. First, Table 9 
reports simulation results for DGP2 instead of DGP1. Second, the top row reports different values of 
the 𝛾𝑌 parameter of DGP2 instead of different values for  𝐶𝑜𝑟𝑟(𝜀𝑡+1

𝑌 , 𝜀𝑡
𝑋). 

Table 10: MSPE based test vs Correlation based test when T=1000, nominal size is 10%. 
DGP2 

𝛾𝑌 0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean RMSPE 
benchmark 

10.978 11.032 11.203 11.506 11.975 12.671 13.714 15.357 18.263 25.080 

Mean RMSPE 

of Forecast 𝑋𝑡 
15.527 14.804 14.173 13.617 13.121 12.676 12.274 11.908 11.572 11.264 

Mean 

𝐶𝑜𝑟𝑟(𝑌𝑡+1, 𝑋𝑡) 
-0.002 0.098 0.198 0.298 0.397 0.497 0.597 0.696 0.796 0.896 

One sided 
DMW test 

0.000 0.000 0.000 0.000 0.000 0.100 0.984 1.000 1.000 1.000 

One sided 
Correlation test 

0.103 0.951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: This table presents the same information provided in Table 9. The only difference is that Table 10 
reports simulation results when our sample size is bigger, T=1000. 

 

The rest of the columns in Tables 9 and 10 are even more interesting because they show cases 
with a positive correlation between the forecast 𝑋𝑡 and the target variable. In particular, whenever 

0 < 𝛾𝑌 ≤ 0.5 we see that forecast 𝑋𝑡 is superior to the benchmark in terms of correlations, yet 

inferior in terms of MSPE. Put differently, in all this rage of values for 𝛾𝑌, the constant benchmark 

model is more accurate than 𝑋𝑡 in terms of MSPE, yet 𝑌𝑡+1 is clearly predictable by 𝑋𝑡, as they 

are strongly connected with relatively high correlations. This is another example in which MSPE 
comparisons fail to detect predictability. The DMW does its duty and tends to correctly reject in 
favor of the model with lower MSPE. Similarly our correlation test does its duty also, rejecting in 
favor of the model with higher correlation. The problem again is that our forecast 𝑋𝑡 is Mincer-

Zarnowitz inefficient. In this scenario, traditional MSPE comparisons may fail to detect 
predictability as we saw earlier with DGP1 and with our basic examples in section 2.  

Notice also that whenever 𝛾𝑌 > 0.5  both criteria, MSPE and correlations, agree in that 𝑋𝑡  is 

preferable relative to the benchmark. Moreover, both tests: DMW and our correlation test, 
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correctly reject their corresponding null hypothesis quite frequently, reaching high power as the 
correlation increases.  

4. Empirical Illustration 
In this section we illustrate the main point of our paper with an empirical application using energy 
commodities and a commodity-currency: the Chilean peso. This illustration is partially inspired by 
the seminal papers by Chen, Rogoff and Rossi (2010, 2011, 2014) who report predictive ability 
from the exchange rates of commodity exporting countries to country-specific commodity indices. 
In the same line of argument Alquist, Kilian and Vigfusson (2013) show that commodity–
currencies have an important ability to predict oil prices. Pincheira, Bentancor, Hardy and Jarsún 
(2022) corroborate this finding using lags of long returns of the Chilean Peso, a commodity-
currency strongly and negatively correlated to copper prices12.  

Alquist and Kilian (2010) and Alquist, Kilian and Vigfuson (2013) base their forecasting models in 
the well known Hotelling (1931) approach, which indicates that the oil price should grow according 
to the interest rate. Alquist, Kilian and Vigfuson (2013) take this main idea one step further and 
extend Hotelling´s model to include other predictors different from the interest rate. To be more 
precise, they construct oil price forecasts according to the following expression: 

𝑃𝑡+ℎ,𝑡
𝑓

= 𝑃𝑡(1 + 𝑧𝑡,ℎ)       (7) 

Where 𝑃𝑡+ℎ∨𝑡
𝑓

 represents the oil price that is predicted h steps into the future at time t. 𝑃𝑡 

represents the oil price at time t, h represents the forecast horizon, whereas 𝑧𝑡,ℎ represents the 

percent variation of a particular exchange rate over the most recent h periods. While Alquist, Kilian 

and Vigfuson (2013) analyze the Canadian and Australian dollars, Pincheira, Bentancor, Hardy 
and Jarsún (2022) show that the Chilean Peso tends to outperform those currencies when 
predicting the oil price and a variety of oil related products. In doing so, the authors consider the 
following specification for their monthly data: 

∆𝑙𝑛(𝑃𝑡) = 𝑐 + 𝛽1[∆𝑙𝑛(𝐸𝑅𝑡−1) + ⋯+ ∆𝑙𝑛(𝐸𝑅𝑡−3)] + 𝛽2[∆𝑙𝑛(𝐸𝑅𝑡−4) +⋯+ ∆𝑙𝑛(𝐸𝑅𝑡−6)] + 𝜀𝑡 

where ∆𝑙𝑛(𝑋𝑡) ≡ 𝑙𝑛(𝑋𝑡) − 𝑙𝑛 (𝑋𝑡−1) and 𝜀𝑡 represent an error term. 𝑃 stands for “Fuel Price” and 

it is their target variable. Finally, 𝐸𝑅𝑡 represents the Chilean exchange rate at time t. In other 

words, they predict one-month-ahead oil returns with two main regressors: the three-month return 
of the Chilean peso from month t-3 to month t, and another three-month return of the Chilean 
Peso, but including months t-6 through t-4. In their Table 3 they show OLS estimates of the 𝛽1and 

𝛽2 coefficients. To our surprise, they are extremely similar, which suggests using directly a six-

month return of the Chilean peso to predict one-month return of the oil price. Accordingly, in our 
empirical illustration, we build our forecasts with the following expression:  

𝑟𝑡+1∨𝑡
𝑓

= −𝑟𝑡,6
𝐶𝐿𝑃  (8) 

where 𝑟𝑡+1∨𝑡
𝑓

 represents a one-month return forecast for a given fuel made at time t. 𝑟𝑡,6
𝐶𝐿𝑃 

represents a six-month log return of the Chilean peso between month t and month t-6. We multiply 
these returns by a minus 1 because in our database the Chilean Peso exchange rate is expressed 
in terms of Chilean pesos per one US dollar.  

The use of long returns in commodity-currencies to predict short returns in commodity prices has 
been explored by a sequel of papers by Pincheira and Hardy (2019, 2021), Pincheira, Hardy, 
Henríquez, Tapia and Bentancor (2023) and Pincheira, Bentancor, Hardy and Jarsún (2022). This 
is different from Alquist, Kilian and Vigfusson (2013) who study predictability h-periods ahead in 

                                                           
12 Pincheira and Hardy (2019, 2021) find strong predictive ability from the Chilean Peso to some base-metal 

prices, including copper. 
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the oil price, with h-period returns in commodity-currencies. The use of long returns as predictors 
can be seen as a way to smooth out exchange rates or to extract a stronger signal from the usually 
noisy short returns in forex markets. In the case of the Chilean peso, while some variation is 
clearly associated to international fluctuations in industrial commodity prices, some other variation 
is unrelated to it, and it has to do with the behavior of noisy traders or important institutional 
players and their own decision making process. For instance, from time to time the Central Bank 
of Chile either buy or sell US dollars in the local market with the specific purpose of accumulating 
reserves or stabilize the real exchange rate. In a similar fashion, private pension funds institutions 
face domestic regulations in terms of exposure to local and international risk. Consequently they 
frequently need to rebalance their portfolios which may importantly affect the domestic currency. 
These decisions might not be related to the international evolution of industrial commodity prices, 
and the use of long returns of the Chilean Peso may be serving as a simple filter to obtain the 
core signal that connects the Chilean peso with international commodity prices13. 

The source of our data is Refinitiv Datastream, from which we downloaded daily closing prices of 
five series: Brent oil, heating oil, propane, WTI oil and the Chilean peso (relative to the US dollar). 
Our data are converted to monthly frequency by sampling from the last day of the month. Our 
monthly database goes from January 2000 to February 2024. The starting point of our analyses 
is mainly determined by the date in which Chile achieved a full fledge inflation targeting regime14. 
As mentioned before, we compute one-step-ahead forecasts for fuel returns using expression (8). 

We focus on two different exercises. First, we compute 283 one-step-forecasts from August 2008, 
to February 2024.  Our first forecast uses the first six-month-return that we are able to compute 
with our data, going from July 2000 back to January 2000.  Then we compute the correlation of 
our sequence of forecasts with each target variable. Notice how simple our approach is. We use 
the same sequence of forecasts for our four series of fuel returns. A statistical significance 
correlation is evaluated with our one sided R2 test. We also compute MSPE of our forecasts with 
the Chilean Peso, and compare it to the MSPE of the constant zero forecast. We then evaluate 
the null of equality in MSPE with a standard DMW test. Table 11 shows our results although 
instead of raw MSPE we show RMSPE.  

Table 11 illustrates the main point of our paper vividly. First, for all four fuels the RMSPE of the 
zero forecast is lower than the corresponding RMSPE when forecasting with the Chilean peso. 
Moreover, the DMW test rejects the null of equality in MSPE quite strongly in favor of the zero 
forecast in all four cases. In other words, the forecast based on the Chilean peso is clearly 
outperformed by the no change forecast in terms of MSPE. Can we conclude then that the Chilean 
peso has no predictive ability whatsoever for fuel returns? The last column in Table 11 has a 
strong negative answer to that question, as the correlation of the forecast based on the Chilean 
Peso with our target variables is statistically significant in all four cases. Moreover, these 
correlations are sizable, ranging from 0.17 for Propane, to 0.25 for WTI and Heating Oil.  These 
statistically significant correlations indicate a strong connection between past developments in 
the Chilean Peso and future fuel returns. This is particularly relevant when the implicit or explicit 
benchmark is the no change forecast, which has zero covariance with the target variable. This is 
a strong case of predictability that might be overlooked by a researcher blindly focused on forecast 
accuracy.  

Our second exercise is very compelling as well, and it is similar to the former. The main difference 

                                                           
13 Pincheira and Hardy (2023) show that, in many cases, exchange rate expectations have stronger ability to 

predict commodity returns relative to the Chilean exchange rate. The authors argue that the predictive 
connection between commodity-currencies and commodity returns might be better exploited with the aid of 
exchange rate expectations that are free from the volatility introduced by some institutional players and 
noisy traders as well.  

14 October 1999 would be the exact date.    
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is that we change the benchmark. Instead of using the constant zero forecast, we use the rolling 
mean forecast computed with the most recent 50 observations, similar to what Goyal and Welch 
(2008) and Goyal, Welch and Zafirov (2023) do. As a consequence of this change in the 
benchmark, we are forced to use the first 50 observations in our sample to compute the first rolling 
mean forecast. Consequently our evaluation period is shorter now, including only 239 
observations from April 2004 until February 2024. In this shorter sample, the correlation of the 
Chilean peso with the target variables is a little different than before. Similarly with RMSPE, they 
are slightly different than in our previous exercise. Despite these little differences, our main 
conclusions remain the same.  Results are displayed in Table 12 next.  

Table 11: Forecasting monthly fuel returns with the Chilean Peso. The Benchmark is the 
no change forecast and the sample period goes from August 2000 to February 2024 

 RMSPE Zero Forecast 
RMSPE CLP 

Forecast RMSPE Ratio Correlation 

WTI 11.12 12.38              1.11**                0.25*** 

Brent 13.21 14.19              1.07**                0.22** 

Propane 14.33 15.48              1.08***                0.17** 

Heating Oil 10.51 11.90              1.13**                0.25*** 

Notes: Table 11 presents results when forecasting monthly returns of WTI oil, Brent oil, Propane and Heating 
oil one- step-ahead, for the period August 2000 to February 2024. Table 11 presents RMSPE 
associated to the zero forecast and to another forecast constructed based on the Chilean Peso. Table 
11 also presents RMSPE ratios, where a figure greater than 1 favors the zero forecast. Statistically 
significant differences in RMSPE are evaluated with a traditional two sided DMW test. The last column 
in Table 11 presents the correlation between the forecast based on the Chilean peso and our target 
variables. Statistically significant correlations are evaluated according to our one sided R2 test. 
*p<10%, **p<5%, ***p<1%. Source: Authors’ Elaboration. 

Table 12: Forecasting monthly fuel returns with the Chilean Peso. The Benchmark is the 
rolling mean forecast computed with the most recent 50 observations. The sample period 

goes from April 2004 to February 2024 

 
RMSPE Rolling Mean  

Forecast 
RMSPE CLP 

Forecast 
RMSPE Ratio Correlation 

WTI 11.54 12.44               1.08 0.26*** 

Brent 13.51 14.09               1.04 0.24** 

Propane 12.39 13.39               1.08** 0.22*** 

Heating Oil 10.49 11.46               1.09 0.29*** 

Notes: Table 12 presents results when forecasting monthly returns of WTI oil, Brent oil, Propane and Heating 
oil one- step-ahead, for the period April 2004 to February 2024. Table 12 presents RMSPE associated 
to the rolling mean forecast constructed with the last 50 observations of the predictand and also the 
RMSPE of another forecast based on the Chilean Peso. Table 12 also presents RMSPE ratios, where 
a figure greater than 1 favors the rolling mean forecast. Statistically significant differences in RMSPE 
are evaluated with a traditional two sided DMW test. The last column in Table 12 presents the 
correlation between the forecast based on the Chilean peso and our target variables. Statistically 
significant correlations are evaluated according to our one sided R2 test. *p<10%, **p<5%, ***p<1%. 
Source: Authors’ Elaboration. 
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From Table 12 we receive the same message than from Table 11: the forecast based on the 
Chilean Peso is clearly outperformed in terms of forecast accuracy, with RMSPE ratios ranging 
between 1.04 and 1.09 in favor of the rolling mean forecast, although now the DMW test rejects 
the null of equality in MSPE only when predicting Propane.  Despite these unfavorable results, 
the correlation of the forecast based on the Chilean peso and our target variables are even larger 
than in Table 11, ranging from 0.22 to 0.29. All four are statistically significant at least at the 5% 
significance level. For the curious reader, let us add that all four correlations of the rolling mean 
forecast with the target variable are small and negative.  

One legitimate question to ask is whether our empirical results are driven by the last sample 
period which might suffer from important instabilities due to the COVID pandemic. In a recent 
paper, Iacone, Rossini and Viselli (2024) explore the behavior of global tests of predictive ability 
in the presence of important instabilities during short periods of time. They recommend the 
exclusion of those periods from traditional analyses because they might importantly alter the 
behavior of traditional tests evaluating average performances. We follow exactly that advice in 
Tables 13 and 14, where we restrict our sample to end in December 2019, before the beginning 
of the pandemic. 

 Table 13: Forecasting monthly fuel returns with the Chilean Peso excluding the COVID 
Pandemic. The Benchmark is the no change forecast.  

 RMSPE Zero Forecast 
RMSPE CLP 

Forecast RMSPE Ratio Correlation 

WTI 9.29 10.47              1.11**                0.31*** 

Brent 10.37 11.35              1.07*                0.29*** 

Propane 14.42 15.21              1.08**                0.20** 

Heating Oil 9.35 10.56              1.13**                0.31*** 

Notes: Table 13 is akin to Table 11 with the only difference that the sample period goes from August 2000 to 
December 2019, so to exclude the COVID pandemic from the analysis.  

Table 14: Forecasting monthly fuel returns with the Chilean Peso excluding the COVID 
Pandemic. The Benchmark is the rolling mean forecast computed with the most recent 50 

observations.  

 
RMSPE Rolling Mean  

Forecast 
RMSPE CLP 

Forecast RMSPE Ratio Correlation 

WTI 9.39 10.07 1.08 0.34*** 

Brent 9.97 10.41 1.04 0.35*** 

Propane 11.96 12.37 1.08 0.28*** 

Heating Oil 8.96 9.56 1.09 0.37*** 

Notes: Table 14 is akin to Table 12 with the only difference that the sample period goes from April 2004 to 
December 2019, so to exclude the COVID pandemic from the analysis.  

 

Tables 13 and 14 corroborate the results from Tables 11 and 12 indicating that our results are not 
the consequence of the instabilities during the Pandemic. While there are some subtleties when 
comparing Table 11 with Table 13 and Table 12 with Table 14, it is striking to note that when 
excluding the Pandemic period, the correlations of our target variables with the forecast 
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constructed with the Chilean peso increase, ranging from 0.20 to 0.38, being statistically 
significant in all cases.  At the same time, this strongly correlated forecast is outperformed in 
terms of RMSPE by our naïve benchmarks. In fact, the null of equality in MSPE is either not 
rejected, or it is rejected favoring the simple benchmarks.   

Consistent with the MSPE Paradox in Pincheira and Hardy (2024a), the opposite performance in 
correlations and MSPE is associated to the presence of inefficiencies in our forecasts. In 
particular, the correlation of the forecast based on the Chilean Peso and its forecast errors is 
always negative and statistically significant at tight significance levels.  To be more precise, these 
correlations range between -0.37 (for Propane) to -0.53 (for WTI and Heating oil) and all of them 
are statistically significant at the 1% level. Tables with all the details of these inefficiencies are 
available upon request.  

Tables 11-14 clearly illustrate that questions about forecast accuracy and predictability are not 
the same. When MSPE is the loss function of preference, these two questions will be different as 
long as at least one competing forecast violates Mincer and Zarnowitz efficiency. Several 
influential papers in the literature are explicit in their objective to detect if a given series is 
predictable or not. Yet the bulk of their analyses are forecast accuracy comparisons. In light of 
our simple yet strong results, the eyes should also look at measures of dependence, being 
correlations the natural first step in this direction.   

5. Concluding remarks 

Very influential articles in the forecasting literature ask a very simple question: is it a given time 
series 𝑌𝑡+1 predictable? Examples of papers dealing at least partially with this question are Rossi 

(2013), Timmermann (2008), Gargano and Timmermann (2014), Goyal and Welch (2008) and 
Goyal and Welch and Zafirov (2023). These are just a few examples of a vast literature exploring 
either directly or indirectly this question. A fairly common approach to address this issue with out-
of-sample exercises, compares the MSPE of a plausible predictor for 𝑌𝑡+1and the MSPE of a 

naïve benchmark consistent with unpredictability. Typically, the naïve benchmark is a constant 
forecast or some sort of historical average of the predictand. If the MSPE of the plausible predictor 
is lower than that of this benchmark, the series is considered predictable, otherwise it is 
considered unpredictable. This intuitive and standard approach, however, might not be truly 
capturing the essence of predictability that is perfectly summarized by Diebold and Kilian (2001) 
when they mention that “The extent of a series´ predictability depends on how much information 
the past conveys regarding future values of this series;” Diebold and Kilian (2001) page 657. 

Similarly, Clements and Hendry (1998) make use of the notion of statistical independence to 
define unpredictability. If we understand predictability as a connection between our target variable 
𝑌𝑡+1 and information revealed in the past, then predictability and accuracy are different, albeit, 

related concepts.  In particular, when the plausible forecast under evaluation is inefficient, it might 
face a paradoxical situation:  On the one hand, it could have a strong and positive correlation with 
the target variable, much greater than the correlation of the benchmark with the same target 
variable. Yet, on the other hand, it could be outperformed in terms of MSPE by the same naïve 
benchmark.   

Predictability does not require an efficient forecast. Predictability just requires dependence 
between the future and the set of information available at time t.  We evaluate the performance 
of very simple correlation tests to detect predictability. Our Monte Carlo simulations suggest that 
they are well sized and relatively powerful.  

We illustrate our point with an empirical application in which forecasts based on the Chilean Peso 
are used to predict monthly returns of oil and oil related products. Despite being strongly 
correlated with the respective target variable, our preferred forecast cannot outperform either the 
naïve rolling mean or the zero forecast in terms of MSPE. 
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Our empirical application clearly illustrate that questions about forecast accuracy and 
predictability are not equal. When MSPE is the loss function of preference, these two questions 
will be different as long as at least one competing forecast violates Mincer and Zarnowitz 
efficiency. Several influential papers in the literature are explicit in their objective to detect if a 
given series is predictable or not. Yet the bulk of their analyses are forecast accuracy 
comparisons. In light of our simple yet strong results, the eyes should also look at measures of 
dependence and not only at measures of forecast accuracy, being correlations the natural first 
step in this direction, but of course future research might also explore more complex structures of 
dependence, allowing for structural breaks or  time varying correlations. 
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Appendix A1: Derivation of the 

Correlation Test 
Assumptions: 

Let 𝑀𝑡 = (

𝑋𝑡
𝑌𝑡
𝑋𝑡
2

𝑋𝑡𝑌𝑡

), and  𝑀�̃� = 𝑀𝑡 − 𝐸(𝑀𝑡) =

(

 

𝑋𝑡 − 𝐸(𝑋𝑡)
𝑌𝑡 − 𝐸(𝑌𝑡)

𝑋𝑡
2 − 𝐸(𝑋𝑡

2)

𝑋𝑡𝑌𝑡 − 𝐸(𝑋𝑡𝑌𝑡))

  

i) The vector 𝑀�̃� is strictly stationary with mixing coefficients 𝛼(𝑙) such that, for some 

𝑟 > 2, 𝐸 ∥ 𝑀�̃� ∥
𝑟< ∞ and ∑ 𝛼(𝑙)1−

2

𝑟∞
𝑙=1 < ∞ 

ii) A strictly positive variance for 𝑌𝑡 and 𝑋𝑡 
iii) 𝑋𝑡 is considered as “given”. In other words, we do not address here the effects of 

parameter uncertainty. 

iv) 𝐶𝑜𝑟𝑟(𝑌, 𝑋) is lower than 1. 

As commented in Pincheira and Hardy (2024b), assumption i) is sufficient for the CLT to hold (see 
Theorem 14.15 in Hansen (2022), page 470).  

Correlation test of predictive ability. 

Define the following sample moments vector: 

[
 
 
 
 
𝑚𝑋
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∑𝑌𝑡
2

𝑇

𝑡=1
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Where [𝜇𝑋 , 𝜇𝑌, 𝜇𝑋𝑋 , 𝜇𝑌𝑌, 𝜇𝑌𝑋]
𝑇  is the population counterpart. Let 𝑠𝑌𝑋 = 𝑚𝑌𝑋 −𝑚𝑌𝑚𝑋, 𝑠𝑌

2 = 𝑚𝑌𝑌 −
𝑚𝑌
2 , 𝑠𝑋

2 = 𝑚𝑋𝑋 −𝑚𝑥
2  be the sample counterparts of 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡) = 𝜎𝑌𝑋 = 𝜇𝑌𝑋 − 𝜇𝑌𝜇𝑋 , 𝜎𝑌

2 = 𝜇𝑌𝑌 −
𝜇𝑌
2 , 𝜎𝑋

2 = 𝜇𝑋𝑋 − 𝜇𝑋
2 , respectively. By the CLT, 
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Where 
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𝛺𝑗

=

[
 
 
 
 
 
 
𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡
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Let us define the following function 𝑔: 𝑅5 → 𝑅3 such that  
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Let 𝛥𝑔 be the first derivative of 𝑔: 
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Or, applied the population counterpart 

𝛥𝑔
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Then, by the CLT 
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Finally, let ℎ: 𝑅3 → 𝑅 such that 
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And let 𝛥ℎ be the vector of the first derivatives of ℎ: 
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Of course, under the null hypothesis 𝜌 = 0   

𝛥ℎ [
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By the Delta method 
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√𝑇(𝑟 − 𝜌)𝑑
→
𝑁(0, 𝛥ℎ′𝛥𝑔′ ∑ 𝛺𝑗

∞

𝑗=−∞

𝛥𝑔𝛥ℎ) 

Then, our proposed standard normal correlation test is simply 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑒𝑠𝑡 =
√𝑇𝑟

√𝛥ℎ′𝛥𝑔′ ∑ 𝛺𝑗
∞
𝑗=−∞ 𝛥𝑔𝛥ℎ

 

Simpler version of the test: 

We start by using the same approach than in the previous lines but aimed at constructing a 
covariance test. Define the following sample moments vector: 

[
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𝑚𝑌𝑋

] =
1

𝑇

[
 
 
 
 
 
 
 
 
∑𝑋𝑡

𝑇

𝑡=1

∑𝑌𝑡

𝑇

𝑡=1

∑𝑌𝑡𝑋𝑡

𝑇
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Where [𝜇𝑋 , 𝜇𝑌, 𝜇𝑌𝑋]
𝑇  is the population counterpart. Let 𝑠𝑌𝑋 = 𝑚𝑌𝑋 −𝑚𝑌𝑚𝑋  be the sample 

counterpart of 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡) = 𝜎𝑌𝑋 = 𝜇𝑌𝑋 − 𝜇𝑌𝜇𝑋 . By the CLT  

√𝑇 {[

𝑚𝑋

𝑚𝑌

𝑚𝑌𝑋

] − [

𝜇𝑋
𝜇𝑌
𝜇𝑌𝑋

]} 𝑑
→
𝑁{(

0
0
0
) , ∑ 𝛺𝑗

∞

𝑗=−∞

} 

Where 𝛺𝑗 = [

𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗)

𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑌𝑡−𝑗)

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−𝑗𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑋𝑡−𝑗𝑌𝑡−𝑗)

] 

Let us define the following function 𝑔: 𝑅3 → 𝑅 such that 𝑔 [

𝑚𝑋

𝑚𝑌

𝑚𝑌𝑋

] = 𝑠𝑋𝑌 = 𝑚𝑋𝑌 −𝑚𝑋𝑚𝑌. Let 𝛻𝑔 be 

the first derivative of 𝑔 : 𝛻𝑔 [

𝑚𝑋

𝑚𝑌

𝑚𝑌𝑋

] = [
−𝑚𝑌

−𝑚𝑋

1
] . Of course, the population counterpart is just 

𝛻𝑔 [

𝜇𝑋
𝜇𝑌
𝜇𝑌𝑋

] = [
−𝜇𝑌
−𝜇𝑋
1
]. Then, by the Delta method  

√𝑇[𝑆𝑋𝑌 − 𝜎𝑋𝑌]𝑑
→
𝑁(0, 𝛻𝑔′ ∑ 𝛺𝑗

∞

𝑗=−∞

𝛻𝑔) 

Then, our proposed standard normal covariance test is simply  

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − 𝑡𝑒𝑠𝑡 = √𝑇
𝐶𝑜𝑣(𝑌, 𝑋)

√𝛻𝑔′∑ 𝛺𝑗
∞
𝑗=−∞ 𝛻𝑔

 

Let 𝑠𝑋 and 𝑠𝑌 consistent estimates of the standard deviations of X and Y, respectively. Then our 

correlation test could be written as: 
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𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑒𝑠𝑡 =
√𝑇 𝑆𝑋𝑌 (𝑠𝑋𝑠𝑌)⁄

(𝑠𝑋𝑠𝑌)
−1√𝛻𝑔′∑ 𝛺𝑗

∞
𝑗=−∞ 𝛻𝑔

 

 

  


