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THE ROLE OF NO-ARBITRAGE 

RESTRICTION IN TERM STRUCTURE 
MODEL IN THE CONTEXT OF AN 
EMERGING MARKET 

Wali ULLAH* 

Abstract 
The precise estimation and forecasting of the term structure of interest rate is of vital 
importance in the context of macroeconomics and finance as the yield curve is considered 
the fundamental conduit of the monetary policy signal to the real sector. This study examines 
the extent to which the so called Dynamic Nelson-Siegel model (DNS) and its extended 
version that impose the no-arbitrage restriction in the standard DNS (AFNS) can fit the term 
structure of interest rates and forecast its future path in the context of an emerging economy. 
Both models are illustrated in the state-space framework and empirically compared in terms 
of in-sample fit and out-of-sample forecast accuracy. For the in-sample fit, both models fit 
the curve remarkably well even in emerging markets. However, the AFNS model fits the 
curve slightly better than the DNS model. Regarding the out-of-sample forecasts, the results 
indicate that the affine based extended model comes with more precise forecasts than the 
DNS for medium and long term maturities, while the standard DNS outperforms the AFNS 
at the short end of the yield curve for all three forecast horizons, i.e., 1-, 6- and 12-months. 
Overall, the results show that there is no single forecast model that dominates its 
competitors.  
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1. Introduction 
The yield curve is a two dimensional graphical representation of the yields on zero-coupon 
bonds and time to maturity. The set of interest rates used to plot the yield curve are generally 
derived from zero-coupon bonds. However, the non-availability of zero-coupon bonds 
beyond one-year maturity in the market, makes it necessary to calculate zero rates on 
coupon-bearing bonds to compute the term structure of interest rates. This plot reflects the 
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information regarding investors’ sentiments and future expectations. Therefore, interest rate 
forecasts can be used to uncover profitable investment opportunities and serves as a general 
guide line for economic policy. 
Over the last four decades, the yield curve modeling approach has moved from one factor 
models to multi-factor models with the stochastic volatility component. Since the seminal 
work of Duffie and Kan (1996), the majority of term structure models are characterized as 
affine, meaning that zero-coupon bond prices have closed-form solutions with an 
exponential affine relationship to the state variables. In this regard, the one-factor models 
include Vasicek (1977), Cox et al. (1985) and Hull and White (1990) and for the multi-factor 
scenario Longstaff and Schwartz (1992), Chen (1996), Chen and Scott (1992), Balduzzi et 
al. (1996) and Dai and Singleton (2000) are used. This class of models is based on the 
theoretical assumption of the expectation hypothesis that imposes the no arbitrage 
restriction in the market. 
A different type of term structure representation belongs to the statistical class of models, 
including the Nelson and Siegel (1987) and Svensson (1995) factors models. Nelson and 
Siegel (1987) formulated the three-factor structure to construct the term structure of interest 
rates. This model is empirically attractive and does not impose theoretical assumptions. 
Despite theoretical shortcomings, the Nelson-Siegel (NS) class of models is able to 
successfully capture yield curve dynamics in all different economic scenarios. Diebold and 
Li (2006) extended the original Nelson-Siegel model to the dynamic three factors model with 
factor loadings identical to NS, where the factors can be interpreted as level, slope and 
curvature respectively, known as the Dynamic Nelson-Siegel (DNS) model. Svensson 
(1995) increases the flexibility of the original specification by adding a fourth term, leading 
to the Svensson formulation of the model. All together, the entire NS family of models is 
often considered superior to affine models for curve fitting (Kim and Orphanides, 2005) and 
out-of-sample forecasting (Duffee, 2002). 
In modeling the yield curve, the assumption of no-arbitrage seems to hold powerful appeal, 
however, this conflicts with the empirics that the NS specification outperforms the theoretical 
affine term structure models. Keeping in view this drawback, Christensen et al. (2011) 
derived an affine version of the Nelson-Siegel model based on the theoretical assumption of 
no-arbitrage restriction. The beauty of their model is that it combines the theory and empirics 
in a single statistical framework, known as affine arbitrage-free NS term structure models 
(AFNS). This is done by solving a system of ordinary differential equations (ODEs) derived 
under the no-arbitrage assumption that has factor loadings identical to the DNS model. Using 
the U.S. Treasury data, they conclude that this model is able to outperform the DNS model 
in both in-sample and out-of-sample fit. However, many studies such as Ullah (2016, 2017), 
Christensen (2012) and Sim and Ohnishi (2015) show that the results derived in Christensen 
et al. (2011) are highly data dependent and the superiority of the AFNS cannot be 
generalized to all markets. 
Although the implementation of yield curve models in the context of emerging economies is 
recent, there has been little evidence supporting the usefulness of the affine models to 
forecast yields in emerging markets. This may be due to the lack of good quality and short 
time span data, which makes it very difficult to reach sound conclusions. In this context, 
Araujo and Cajueiro (2013) and Caldeira et al. (2016) highlight that it is not possible to 
determine an individual model that consistently produces superior forecasts for all maturities 
and all forecast horizons. Nevertheless, empirical results suggest that the traditional DNS 
model has good out-of-sample forecasting performance when compared to the RW, AR(1), 
and VAR(1), especially when we consider 1- and 3-month ahead horizons. Overall, the 
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results in the context of emerging markets show that there is no single forecast model that 
dominates all competitors. This is due to the fact that different models outperform the others, 
depending on time horizon ahead, maturity and forecast period.  
This led us to evaluate the performance of Christensen et al. (2011) framework in the context 
of an emerging economy, where the markets are highly regulated and suffer from lack of 
liquidity. The bond markets in emerging economies are highly segmented and not as efficient 
as in developed countries. The arbitrage-free version of the DNS, therefore, may not be able 
to fit and forecast the term structure as accurately as in developed markets. This study 
applies the Christensen et al. (2011) framework to Pakistan’s market data to evaluate its 
performance in comparison to the standard DNS and identify a more appropriate term 
structure model in the emerging market context. The study may also be helpful to point out 
the signals of arbitrage opportunity in the market if the standard DNS model comes with 
more appropriate fitting of the data than the AFNS model. 
Against this background, we consider the affine term structure model described in 
Christensen et al. (2011) and compare its performance in terms of in-sample fit and out-of-
sample forecasts with the standard dynamic Nelson-Siegel (DNS) model. To address the 
performance of AFNS model in the environment of the Pakistani bond market, this study 
seeks answers to the following main questions. 
i. How do these two models perform in terms of in-sample fit and out-of-sample forecast 

in the Pakistani government bonds market? 
ii. Is the dominance of the affine Nelson-Siegel model over DNS generalizable in the 

context of emerging markets? 
The remainder of the paper is structured as follows. Section 2 briefly discusses recent trends 
and reforms in the bond market of Pakistan. Section 3 discusses the two models that are 
used to estimate and forecast the yield curve in the state space framework and explains the 
estimation methodology. Section 4 describes the data used in the empirical part of the study 
and the in-sample fit results. The forecasting performance of the models is evaluated in 
section 5 and section 6 summarizes and concludes the study. 

2. Bond Market in Pakistan  
The perpetual cycles of financial crisis during the last three decades have strongly indicated 
the importance of diversifying the risk profile within the financial system. This can be done 
by including the fixed income market as an alternate source of funding other than banking 
and equity sectors. With this emerging perspective, the development of a well-functioning 
bond market has attained high importance in the new financial market architecture. In 
Pakistan, the development of the bond market was initiated after the liberalization reforms 
in the late 1990s, however, Pakistan's bond market has developed at a much slower pace 
as compared to other countries. Like other emerging markets, most of the debt financing is 
done through bank borrowings. The outstanding domestic bonds stood at 30% of the GDP, 
equivalent to PKR 5.8 trillion as of June 2012 (State Bank of Pakistan, 2012). This consists 
mainly of government bonds, as the corporate market is yet to develop. The Government 
bond market gained momentum after the introduction of Pakistan Investment Bonds (PlBs) 
in 2000, which helped to streamline the auction of Government Securities and develop a 
secondary market for the Government Paper. Outstanding Treasury Bills (TBs) were roughly 
PKR 2.4 trillion as of June 2012 out of which banks were holding 75% worth of short term 
paper. Outstanding PIBs amounted to PKR 974 billion, out of which 52% of the holdings 
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were with banks. By June 2017, the short term TBs had piled up to PKR 4.213 trillion, while 
the total outstanding domestic bonds were PKR 9.5 trillion (State Bank of Pakistan, 2017). 
The corporate debt market is very shallow and only 88 securities worth PKR 601.23 billion 
are traded (Pakistan Economic Survey, 2018). Over the last five years the bond market has 
witnessed 60% growth with about 75% growth in TBs and and 350% in PIBs. The major 
reason behind these growth trends is that over the last five years, sustained budget deficits 
have necessitated large issuance of government securities in Pakistan. Taking advantage 
of this, there is an immense need to develop a deep and liquid bond market because efficient 
debt markets can help to mitigate the adverse impact of financial crises by providing an 
alternative source of financing. 
These statistics indicate that the bond market in Pakistan has expanded rapidly over the last 
6 years. It is currently the main source of financing for the government. The central bank is 
also trying to promote the development of the bond market by generating new products and 
the establishment of a group of primary dealers responsible for stimulating the market. 
However, the bond market is marked by a significantly lower volume of trading as it is smaller 
and illiquid as compared to the bond markets of developed countries. In fact, the sparseness 
or infrequency of daily Treasury bonds transactions explains the inaccuracy of the interest 
rates yield curve. The drawback is that there is no specific term structure model of interest 
rates and market operators devise a proxy of the yield curve based only on the liquid bonds. 
Thus, the unevenly distributed maturities of different bonds makes the estimation very 
difficult and the market is less likely to form an entire and smooth yield curve. This study 
attempts to fill this gap by investigating the performance of the Nelson-Siegel model (with 
and without no-arbitrage restriction) in generating a smooth yield curve which replicates the 
stylized facts of the various interest rates in the context of the Pakistan bond market. 

3. Term Structure Models 
The yield curve presents the relationship between the yields and maturity of zero-coupon 
bonds at a specific time point 𝑡. Because of the limited observed yield points, the yield curve 
estimation requires the assumption of some model, so that the gaps may be filled in by 
analogy with the yields seen in the observed maturities. In this section, we briefly explain the 
Nelson-Siegel spot rates model with and without imposing the arbitrage free restriction. The 
former is labeled as AFNS, while the latter as DNS model. The next two sub-sections present 
the dynamic version of the yield curve model (specified as DNS) and the affine version of 
the dynamic Nelson-Siegel model (AFNS). Lastly, in the third sub-section both specifications 
are presented in the state space framework along with the estimation procedure. 
3.1. The Dynamic Nelson-Siegel Model (DNS) 
The term structure model proposed in Nelson and Siegel (1987) is based on the expectation 
hypothesis that long term spot rates is the weighted sum of the expected future short rates, 
which are observed in the form of current forward rates in the market at time 𝑡. The 
mathematical function capable of generating the typical forward rates curve shape is related 
with the solution of the differential equation. However, the specification for the yield curve 
presented in Nelson and Siegel (1987) is static and can be used to fit the cross-section of 
yields. By properly re-factorizing the model, Diebold and Li (2006) have reinterpreted the 
Nelson–Siegel model for the yield curve to model the bond market evolution over time. In 
the dynamic framework, given the Nelson–Siegel loadings, the term structure of interest 
rates can be summarized by three factors, i.e., the level, slope and curvature of the yield 
curve, as: 
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𝑅௧ሺ𝑚ሻ ൌ 𝛽ଵ௧ ൅ 𝛽ଶ௧ ቈ1 െ expሺെ𝜆𝑚ሻ𝜆𝑚 ቉ ൅ 𝛽ଷ௧ ቈ1 െ expሺെ𝜆𝑚ሻ𝜆𝑚 െ expሺെ𝜆𝑚ሻ቉ ൅ 𝜀௧ሺ𝑚ሻ (1) 

 

where 𝑅௧ሺ𝑚ሻ is the zero-coupon yield for maturity 𝑚 at time 𝑡, 𝑚 ൌ 1,2, … , 𝑁;  𝑡 ൌ 1,2, … , 𝑇. 𝛽௧ ൌ ሺ𝛽ଵ௧, 𝛽ଶ௧, 𝛽ଷ௧ሻᇱ is the unobservable vector of the three latent factors of level, slope and 
curvature respectively. The constant parameter 𝜆 is the decay parameter of the factor 
loading of the yield curve slope. This representation of the original Nelson-Siegel model 
interprets the elements in 𝛽௧ vector as latent factors with different factor loadings and assigns 
a strong intuitive interpretation to them (Diebold and Li, 2006). 
The formulation of the dynamic Nelson-Siegel (DNS) model is parsimonious and easy to 
estimate. However, for modelling the entire yield curves simultaneously, we need a state-
space representation of the model. Since, we assume that the yield curve latent factors 
vector 𝛽௧ follow a vector autoregressive process of the first order, which allows us to 
formulate the yield curve latent factors model in the state-space form, with observation and 
transition equations (2 and 3 respectively) as: 
 

 𝑅௧ ൌ Λሺ𝜆ሻ𝛽௧ ൅ 𝜀௧ (2) 

 𝛽௧ାଵ ൌ ሺ𝐼ଷ െ 𝐹ሻ𝜇 ൅ 𝐹𝛽௧ ൅ 𝑣௧ାଵ (3) 

 ቂ 𝜀௧𝑣௧ାଵቃ ∼ 𝑁 ൬ቂ00ቃ , ൤Ω 00 Σ௩൨൰ (4) 
 

where 𝑅௧ is (N×1) vector of zero-coupon yields, 𝛽௧ ൌ ሺ𝛽ଵ௧, 𝛽ଶ௧, 𝛽ଷ௧ሻᇱ is the (3×1) vector of latent 
factors of the yield curve, Λሺ𝜆ሻ is (N×3) matrix of loadings, 𝜇 is the (3×1) vector of factors 
mean, and 𝐹 is (3×3) full-matrix of parameters. The 𝜀௧ and 𝑣௧ are (N×1) and (3×1) innovations 
vectors of the observation and state equations respectively, Ω is (N×N) covariance matrix of 
the measurement equation innovations, and Σ௩ is the (3×3) covariance matrix of the state 
innovations.  
3.2. The Affine Nelson-Siegel model (AFNS) 
While not having a strong theoretical foundation, especially lacking the assumption of no-
arbitrage, the term structure representation in DNS is superior in capturing yield curve 
dynamics. However, to ensure the arbitrage-free restriction explicitly, Christensen et al. 
(2011) have extended the DNS model by adhering to the standard continuous time affine 
diffusion processes developed in Duffie and Kan (1996). The approach is very similar to 
other multifactor affine term structure models except for the solutions to the Ricatti ordinary 
differential equations (ODEs). The solutions of the ODEs are chosen to match the DNS yield 
function specified in (1).  
Defining the state variables 𝛽௧ ∈ ℝଷ , to be the Markov process, that solve the stochastic 
differential equation under the ℚ-measure, which is: 
 

 𝑑𝛽௧ ൌ 𝐾ሺ𝑡ሻሾ𝜃ሺ𝑡ሻ െ 𝛽௧ሿ𝑑𝑡 ൅ Σሺ𝑡ሻ ቎ඥ𝛾ଵሺ𝑡ሻ ൅ 𝛿ଵሺ𝑡ሻ𝑋௧ ⋯ 0⋮ ⋱ ⋮0 … ඥ𝛾ଷሺ𝑡ሻ ൅ 𝛿ଷሺ𝑡ሻ𝑋௧቏ 𝑑𝑊௧ (5) 
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where 𝑊 is a standard Brownian motion in ℝଷ with independent components, the drifts 𝜃 ∈ℝଷ, dynamics 𝐾 ∈ ℝଷൈଷ , the covariance matrix Σ ∈ ℝଷൈଷ, 𝛾௜ ∈ ℝ and 𝛿௜ ∈ℝଷൈଷ(where 𝛿௜ denotes the 𝑖௧௛row of the 𝛿 matrix).  
Moreover, the instantaneous risk-free rate 𝑟௧ is assumed to be an affine function of the state 
variables as: 
 

 𝑟௧ ൌ 𝜌଴ሺ𝑡ሻ ൅ 𝜌ଵሺ𝑡ሻᇱ𝛽௧ (6) 
 

where 𝜌଴ and 𝜌ଵ are bounded continuous functions. Using the Duffie and Kan (1996) 
formulation that zero-coupon bond prices are exponential affine functions of the state 
variables, Christensen et al. (2011) construct the partial differential equations and then solve 
the Ricatti ODEs, to find out the zero-coupon yields function, as: 
 

 𝑅ሺ𝑡, 𝑇ሻ ൌ െ 1𝑇 െ 𝑡 log𝑃ሺ𝑡, 𝑇ሻ ൌ െ 𝑩ሺ𝑡, 𝑇ሻᇱ𝑇 െ 𝑡 𝛽௧ െ 𝐴ሺ𝑡, 𝑇ሻ𝑇 െ 𝑡  (7) 
 

where 𝑩ሺ𝑡, 𝑇ሻ and 𝐴ሺ𝑡, 𝑇ሻ are the solutions to the system of ODEs. However, to incorporate 
the empirical attractiveness of the DNS model, the solution to such ODEs must be matched 
to the yield function in the DNS model. To obtain the closest match, Christensen et al. (2011) 
impose the following structure on 𝐾 ∈ ℝଷൈଷ and 𝜌ଵ ∈ ℝଷൈଵ when solving the ODEs. 
 

 𝐾 ൌ ൥0 0 00 𝜆 െ𝜆0 0 𝜆 ൩ ,        𝜌ଵ ൌ ൥110൩ (8) 

 

The formulation in (8) ensures that the instantaneous risk free rate is affine in the form 𝑟௧ ൌ𝛽ଵ ൅ 𝛽ଶ. With dynamics from (5), the restrictions in (8) and by limiting the volatility to be 
constant, i.e., Σሺ𝑡ሻ ൌ Σ, the ODEs are: 
 

 

⎣⎢⎢
⎢⎢⎢
⎡𝑑𝐵ଵሺ𝑡, 𝑇ሻ𝑑𝑡𝑑𝐵ଶሺ𝑡, 𝑇ሻ𝑑𝑡𝑑𝐵ଷሺ𝑡, 𝑇ሻ𝑑𝑡 ⎦⎥⎥

⎥⎥⎥
⎤ ൌ 𝜌ଵ ൅ 𝐾ᇱ𝑩ሺ𝑡, 𝑇ሻ ൌ ൥110൩ ൅ ൥0 0 00 𝜆 00 െ𝜆 𝜆൩ ቎𝐵ଵሺ𝑡, 𝑇ሻ𝐵ଶሺ𝑡, 𝑇ሻ𝐵ଷሺ𝑡, 𝑇ሻ቏ (9) 

 𝑑𝐴ሺ𝑡, 𝑇ሻ𝑑𝑡 ൌ െ𝑩ሺ𝑡, 𝑇ሻᇱ𝐾𝜃 െ 12 ෍ሾΣᇱ𝑩ሺ𝑡, 𝑇ሻ𝑩ሺ𝑡, 𝑇ሻᇱΣሿ௝,௝ଷ
௝ୀଵ  (10) 

 

The solutions to the system of ODEs defined in (9) and (10) are: 
 

 𝐵ଵሺ𝑡, 𝑇ሻ ൌ െሺ𝑇 െ 𝑡ሻ (11) 

 𝐵ଶሺ𝑡, 𝑇ሻ ൌ െ 1 െ expሾെ𝜆ሺ𝑇 െ 𝑡ሻሿ𝜆  (12) 
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 𝐵ଷሺ𝑡, 𝑇ሻ ൌ ሺ𝑇 െ 𝑡ሻexpሾെ𝜆ሺ𝑇 െ 𝑡ሻሿ െ 1 െ expሾെ𝜆ሺ𝑇 െ 𝑡ሻሿ𝜆  (13) 

 𝐴ሺ𝑡, 𝑇ሻ ൌ ሺ𝐾𝜃ሻଶ න 𝐵ଶሺ𝑠, 𝑇ሻ𝑑𝑠்
௧൅ ሺ𝐾𝜃ሻଷ න 𝐵ଷሺ𝑠, 𝑇ሻ𝑑𝑠 ൅்

௧ 12 ෍ න ሾΣᇱ𝑩ሺ𝑠, 𝑇ሻ𝑩ሺ𝑠, 𝑇ሻᇱΣሿ௝,௝𝑑𝑠்
௧

ଷ
௝ୀଵ  

(14) 

 

Finally, inserting the above solutions (11-14) in the zero-coupon yields equation (7) implies: 
 𝑅ሺ𝑡, 𝑇ሻ ൌ 𝛽ଵ௧ ൅ 1 െ expሾെ𝜆ሺ𝑇 െ 𝑡ሻሿ𝜆ሺ𝑇 െ 𝑡ሻ 𝛽ଶ௧൅ ൥1 െ expሾെ𝜆ሺ𝑇 െ 𝑡ሻሿ𝜆ሺ𝑇 െ 𝑡ሻ െ expሾെ𝜆ሺ𝑇 െ 𝑡ሻሿ൩ 𝛽ଷ௧ െ 𝐴ሺ𝑡, 𝑇ሻሺ𝑇 െ 𝑡ሻ 

(15) 

 

The yield curve representation in (15) is identical to (1) when disregarding the adjustment 
term 𝐴ሺ𝑡, 𝑇ሻ/ሺ𝑇 െ 𝑡ሻ. This implies that the short rate is a function of the level and slope of the 
curve, but not curvature. This is in line with other three-factor models (Dai and Singleton, 
2000). Moreover, the adjustment term 𝐴ሺ𝑡, 𝑇ሻ/ሺ𝑇 െ 𝑡ሻ is the main feature that distinguishes 
the AFNS model from the DNS model, and is therefore of vital importance. Based on this 
adjustment term Christensen et al. (2011) conclude that their AFNS model outperforms the 
DNS model.  
Christensen et al. (2011) show that (14) has an analytical solution, when 𝜃 ൌ 0. This involves 
solving six integrals, demonstrating that the 𝐴ሺ𝑡, 𝑇ሻ term is a complex function of the volatility 
matrix Σ, decay parameter λ and maturity 𝑚 ൌ 𝑇 െ 𝑡. Here we simply apply their closed-form 
solution of (14) for the correlated AFNS.  
The AFNS is a continuous time model, the time dimension should be modeled in terms of 
dynamics instead of a time-series model such as an AR or random walk. However, it does 
not mean that similar models cannot be estimated to ensure comparison. For the AFNS, the 
dynamics of the state variables can be modeled as: 

 𝑑𝛽௧ ൌ 𝐾ሺ𝜃 െ 𝛽௧ሻ𝑑𝑡 ൅ Σ𝑑𝑊௧ (16) 
 

with 𝛽௧ ൌ ሾ𝛽ଵ௧, 𝛽ଶ௧, 𝛽ଷ௧ሿᇱ, 𝜃 ൌ ሾ𝜃ଵ, 𝜃ଶ, 𝜃ଷሿᇱ, 𝑑𝑊௧ ൌ ሾ𝑑𝑊ଵ௧, 𝑑𝑊ଶ௧, 𝑑𝑊ଷ௧ሿᇱ, and dynamics 𝐾 ∈ℝଷൈଷ ,and the covariance matrix Σ ∈ ℝଷൈଷ. 
The specification for yield curve in (15) and state dynamics in (16) for the AFNS resemble 
to the DNS measurement equation (2) and state equation (3) respectively. In order to simplify 
the mathematical notations, the state-space form of the AFNS model under ℙ-measure can 
be written as: 
 𝑅௧ ൌ Λሺ𝜆ሻ𝛽௧ െ 𝐴 ൅ 𝜀௧ (17) 

 𝛽௧ାଵ ൌ ሺ𝐼ଷ െ 𝑒ି௄୼௧ሻ𝜃 ൅ 𝑒ି௄୼௧𝛽௧ ൅ 𝑣௧ାଵ (18) 

 ቂ 𝜀௧𝑣௧ାଵቃ ~𝑁 ൬ቂ00ቃ , ൤Ω 00 Σ௩൨൰ (19) 
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where 𝛽௧ is (3×1) vector of latent factors, 𝐾 is the (3×3) full-matrix of parameters, 𝜃 is (3×1) 
vectors of factors mean like 𝜇 in DNS and 𝐴 is the (N×1) vectors of yield-adjustment term 
(which is a function of maturity). The definitions and dimensions of all remaining matrices 
and vectors are same as discussed in the DNS model specification.  
3.3. Statistical formulation of the models and estimation method 
The estimation procedure is based on the Kalman filter. For convenience, we introduce some 
new notations and rewrite the signal and state equations to obtain the generalized form for 
the models in the state-space framework. For both models, the specification is given as: 

 𝑅௧ ൌ 𝐵𝑋௧ ൅ 𝐴ሚ ൅ 𝑤௧  ,      ∀ 𝑡 ൌ 1,2, … , 𝑇  (20) 

 𝑋௧ ൌ 𝐶 ൅ 𝐻𝑋௧ିଵ ൅  𝑢௧ (21) 

 ቂ𝑤௧𝑢௧ ቃ ∼ 𝑁 ൬ቂ00ቃ , ൤Ω 00 𝑄௧൨൰ (22) 
 

where 𝐴ሚ ൌ 0 for the DNS, the expressions of  𝐵, 𝐴ሚ, 𝑋௧, 𝐶, 𝐻, Ω, 𝑄௧, 𝑤௧ and 𝑢௧ in case of both 
DNS and AFNS are given in Appendix-I. In both specifications, the matrix Ω is assumed to 
be diagonal for computational traceability, while the covariance matrix 𝑄௧ is non-diagonal. 
Moreover, the transition and the measurement errors are assumed orthogonal to the initial 
state. The state-space form of the affine based model under ℙ-measure is similar to its 
counterpart DNS model with the exception of yield-adjustment term 𝐴ሚ in the affine model.  
The Kalman filter algorithm is implemented along the lines of Harvey (1989) and Welch and 
Bishop (2006) to evaluate the Gaussian likelihood function to obtain the latent factors and 
estimates of the hyper-parameters in both frameworks. The filter is initialized at the 
unconditional mean and variance of the state variables under the ℙ-measure. The optimal 
estimate in Kalman filter is the conditional mean of 𝑋௧ dependent on information set, denoted 
as 𝜁௧. Using the transition equation, the recursive prediction step can be calculated as: 

 𝑋௧|௧ିଵ ൌ 𝔼ሺ𝑋௧|𝜁௧ିଵሻ ൌ 𝐶 ൅ 𝐻𝑋௧ିଵ  (23) 

 𝑃௧|௧ିଵ ൌ 𝔼ൣ൫𝑋௧ െ 𝑋௧|௧ିଵ൯൫𝑋௧ െ 𝑋௧|௧ିଵ൯ᇱ|𝜁௧ିଵ൧ ൌ 𝐻𝑃௧ିଵ𝐻ᇱ ൅ 𝑄௧ (24) 
 

where 𝑃௧|௧ିଵ is the mean square error (MSE) matrix at the prediction step. In the prediction 
step for the AFNS model,𝐶 ൌ ሾ𝐼ଷ െ expሺെ𝐾Δ𝑡ሻሿ𝜃 and 𝐻 ൌ expሺെ𝐾Δ𝑡ሻ. Furthermore, due to 
the continuous nature of the affine model, the covariance matrix 𝑄௧ of transition equation for 
the AFNS is computed as:  

 𝑄௧ ൌ න expሺെ𝐾𝑠ሻ୼௧
଴ ΣΣᇱexpሺെ𝐾ᇱ𝑠ሻ𝑑𝑠 (25) 

 

Using the measurement equation the estimates in (23) and (24) are updated by 
observing 𝑅௧ , thus in the update step: 

 𝑋௧|௧ ൌ 𝔼ሺ𝑋௧|𝜁௧ሻ ൌ 𝑋௧|௧ିଵ ൅ 𝑃௧|௧ିଵ𝐵ᇱ𝑆௧ି ଵ𝜂௧  (26) 

 𝑃௧|௧ ൌ 𝑃௧|௧ିଵ െ 𝑃௧|௧ିଵ𝐵ᇱ𝑆௧ି ଵ𝐵𝑃௧|௧ିଵ (27) 
 

where 𝜂௧ is the forecast error vector computed as: 𝜂௧ ൌ 𝑅௧ െ 𝐵𝑋௧|௧ିଵ െ 𝐴ሚ (where 𝐴ሚ ൌ 0 for the 
DNS specification) and 𝑆௧ is the MSE matrix of 𝜂௧ computed as: 𝑆௧ ൌ 𝐵𝑃௧|௧ିଵ𝐵ᇱ ൅ Ω. The 
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difference in statistical model building becomes quite clear when comparing the prediction 
step for the DNS and affine model in the Kalman filter. However, because of the model 
freedom under the ℙ-measure the two setups can be made as identical as possible by 
specifying similar models. The update step is identical in both setups with the exception of 𝐴ሚ (which is the difference between the two measurement equations). Therefore, only the 
forecasting errors are different. 
The Kalman filter iterative process is started with 𝑋଴ and 𝑃଴ being set at the unconditional 
mean and covariance as discussed in Hamilton (1994). The beginning of the Kalman filter 
iteration also depends on parameters vector 𝜓. Denoting 𝜓 ൌ ሺ𝜆, B, 𝐶, 𝐵, Ω, Q௧ሻ as the vector 
of unknown parameters, and assuming that the forecasting errors 𝜂௧ are Gaussian, the 
Gaussian log likelihood is computed as: 

 log 𝐿 ሺ𝜓ሻ ൌ ෍ ൬െ 𝑁2 logሺ2𝜋ሻ െ 12 log|𝑆௧| െ 12 𝜂௧ᇱ𝑆௧ି ଵ𝜂௧൰்
௧ୀଵ  (28) 

 

The matlab built-in function fminsearch, which is based on Nelder and Mead numerical 
optimization routine is used to maximize the log likelihood function (28) and obtain the 
estimates of the parameters. The var-covariance matrix of the estimates is computed using 
the outer product of the numerically computed gradient vector. 

4.  Empirical Results 
Considering Pakistan’s government bond yields of 15 different maturities between 2002 and 
2016, we estimate the DNS and AFNS using the Kalman filter algorithm to obtain the 
estimates of the latent factors and the maximum likelihood method to estimate the 
parameters. The details of the data-set are provided in section 4.1. The estimation results 
regarding the in-sample fitting of both models are presented in section 4.2. 
4.1. Data description 
We use the Pakistan yield data published by the Mutual Fund Association of Pakistan 
(MUFAP) and Pak Brunei Investment Company. We collect monthly observations for the 
period August 2002 until December 2016 on yields for 15 maturities of 3, 6, 9, 12, 18, 24, 
30, 36, 48, 60, 72, 84, 96, 108 and 120 months. 
The descriptive statistics for the yields are presented in table 1.  

Table 1 
Descriptive statistics of yields data across maturities 

Maturity Mean SD Max Min SK Kurtosis 𝝆ෝ ሺ𝟏ሻ 𝝆ෝ ሺ𝟔ሻ 𝝆ෝ ሺ𝟏𝟐ሻ 
3 8.552 3.426 13.449 1.118 -0.561 2.427 0.990 0.890 0.703 
6 8.660 3.436 13.751 1.131 -0.533 2.439 0.990 0.887 0.694 
9 8.744 3.411 13.914 1.233 -0.522 2.445 0.990 0.883 0.686 

12 8.828 3.388 14.109 1.335 -0.511 2.449 0.990 0.880 0.678 
18 9.054 3.309 14.570 1.726 -0.489 2.381 0.989 0.867 0.663 
24 9.279 3.245 15.063 2.117 -0.456 2.313 0.987 0.848 0.642 
30 9.424 3.205 15.271 2.316 -0.441 2.272 0.987 0.844 0.635 
36 9.569 3.171 15.478 2.515 -0.422 2.232 0.986 0.838 0.625 
48 9.831 3.036 15.841 3.096 -0.397 2.276 0.985 0.825 0.618 
60 10.010 2.956 15.866 3.474 -0.381 2.275 0.984 0.816 0.605 
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Maturity Mean SD Max Min SK Kurtosis 𝝆ෝ ሺ𝟏ሻ 𝝆ෝ ሺ𝟔ሻ 𝝆ෝ ሺ𝟏𝟐ሻ 
72 10.236 2.803 16.087 3.845 -0.375 2.391 0.983 0.798 0.583 
84 10.389 2.711 16.183 4.192 -0.356 2.409 0.982 0.792 0.579 
96 10.512 2.621 16.266 4.584 -0.309 2.350 0.981 0.790 0.580 

108 10.572 2.598 16.389 4.683 -0.326 2.392 0.981 0.790 0.585 
120 10.628 2.604 16.531 4.531 -0.345 2.528 0.980 0.782 0.570 

Note: The table shows descriptive statistics for monthly yields at different maturities. The last 
three columns contain sample autocorrelations at displacements of 1, 6 and 12 months. The 
sample period is 2002:08–2016:12. The number of observations is 173. 

The results show the average yield curve to be upward sloping as the mean yield increases 
with maturity. Moreover, the short rates are found to be more volatile and persistent than 
long rates. Skewness exhibits an upward trend with maturity. Kurtoses of the short rates are 
lower than those of the long rates. The yields for all maturities are also highly persistent. 
Figure 1 presents a three-dimensional plot of the yield curve data. The visual inspection 
indicates that the yield curves have an upward slope at all points in time considered in this 
study. Moreover, the shapes are almost stable except early 2006 and 2010. The figure 
shows that the yield curves have shifted down in the current episode of monetary policy 
ranging from early 2015 till date. 

Figure 1 
Yield Curves- data plot 

 
Note. The figure shows the yield curves, 2002:08–2016:12. The sample consists of monthly yield 
data from August 2002 to December 2016 (173 months) for maturities of 3, 6, 9, 12, 18, 24, 30, 
36, 48, 60, 72, 84, 96, 108 and 120 months (15 maturities).  

4.2. Estimation results of the models 
The two versions of the Nelson-Siegel model, i.e., AFNS and DNS are estimated using the 
Kalman filter algorithm. For given values of the system matrices, the Kalman filter is used to 
evaluate the log likelihood function via the prediction error decomposition. The maximum-
likelihood estimates of the unknown parameters are obtained by optimizing the Gaussian log 
likelihood function. The filtering process is initialized using the unconditional mean (equal to 𝜇 in the DNS and 𝜃 in the AFNS framework) and unconditional covariance matrix of the state 
vector. Moreover, we assume that both innovations (signal and state equations) are 
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independent to the initial state vector, i.e., 𝐸ሺ𝑤௧𝑋଴ሻ ൌ 0 and 𝐸ሺ𝑢௧𝑋଴ሻ ൌ 0. The Kalman filter 
algorithm is also sensitive to the initializing values of parameters, we use the estimates of 
the parameters reported in Ullah et al. (2015) as the initial guess for the hyper parameters.  
The estimation results for the vector autoregressive (VAR) of the latent factors in the 
standard DNS and AFNS models are presented in table 2. The mean vector of the three 
factors in both setups are statistically significant and almost similar in terms of estimated 
coefficients. The transition matrix (denoted by 𝐹 in DNS and 𝐾 in AFNS setup) results show 
that own lag dynamics play a significant role in projecting the latent factors in both 
frameworks as all estimated coefficients are highly significant and explain a significant 
portion of variation in current value of the estimated factors. Regarding, the cross factors 
dynamics, the lagged level factor has statistically significant impact on the slope and 
curvature factors in both setups. Moreover, we observe that the level factor is affected 
significantly by the lagged slope and curvature factors in the AFNS and DNS framework 
respectively.  
Concerning the comparison between the two models, the mean vectors and 𝜆 are directly 
comparable, while the matrix 𝐾 should be transformed using 𝑒𝑥𝑝ሺെ𝐾Δ𝑡ሻ to be compared with 
the transition matrix 𝐹 in the DNS. The mean vector and decay parameter in both models 
are almost similar (with very minor difference in terms of magnitudes). 
The estimate of decay parameter λ in both setups is also similar, being 0.0376 with standard 
error of 0.0017 in the DNS model, and 0. 0344 with standard error of 0.0021 in the AFNS 
model, indicating that both estimates are highly significant. This shows that the curvature 
factor loading hits its maximum point at the maturity of about 48-month in the DNS model, 
while at 52-month maturity in the case of AFNS model. The difference may be due to the 
yield adjustment term in the AFNS framework, which plays a significant role at the long end 
of the curve as shown in figure 2. 
The state transition matrix 𝐾 and covariance matrix Σ in AFNS are modeled continuously and 
need to be converted to be comparable. The continuous state transition matrix 𝐾 and 
volatility matrix Σ are converted into one-month conditional matrices, for the mean-reversion 
matrix 𝐾 that is done by computing expሺെ𝐾Δ𝑡ሻ and for the volatility matrix Σ , equation (25) 
is used with Δ𝑡 ൌ 1/12. Results for the conditional one month 𝐾 (denoted as 𝐾෩ ) are shown 
in (29) 

 𝐾෩ ൌ ൭ 1.0019 െ0.0031 െ0.0216െ0.0114 0.9925 െ0.02590.0075 െ0.0033 0.9637 ൱ (29) 

Comparing the matrix 𝐾෩ in (29) and 𝐹 in table 2, the results indicate that all three factors are 
more persistent in the AFNS than the DNS. Cross-factors dynamics seems unimportant in 
the AFNS model, while reasonably stronger in DNS framework. This suggests that AR 
specification will be more appropriate to model the latent factor in the transition equation as 
compared to VAR specification in the affine framework. Since, it will be of immense interest 
to evaluate the likelihood for the AR specification of the state vector and compare with the 
dependent factors DNS. Based on the log-likelihood value for the in-sample fit, the AFNS 
seems to be superior to the DNS model. 
Lastly, we apply the Wald test to evaluate the joint significance of individually insignificant 
coefficients in both models. The results are presented in panel 2 of table 2. The results 
indicate that the individually insignificant coefficients are jointly significant as the p-values 
are extremely small in both setups. 
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Table 2 
Latent factors parameters estimate of the AFNS and DNS models  

Model AFNS DNS 
Panel 1: Estimates of transition matrix and mean vector 

 𝜃 𝛽ଵ,௧ିଵ 𝛽ଶ,௧ିଵ 𝛽ଷ,௧ିଵ 𝜇 𝛽ଵ,௧ିଵ 𝛽ଶ,௧ିଵ 𝛽ଷ,௧ିଵ 𝛽ଵ,௧ 9.657 
(0.007) 

-0.023 
(0.004) 

0.037 
(0.001) 

0.265 
0.1901 

9.672 
(0.090) 

0.624 
(0.005) 

0.034 
(0.021) 

0.179 
(0.013) 𝛽ଶ,௧ -7.646 

(0.008) 
0.135 
(0.018) 

0.092 
(0.005) 

0.3190 
0.2401 

-7.877 
(0.362) 

0.082 
(0.028) 

0.967 
(0.015) 

0.271 
(0.032) 𝛽ଷ,௧ -2.408 

(0.001) 
-0.091 
(0.001) 

0.039 
(0.068) 

0.443 
0.001 

-1.866 
(0.526) 

-0.145 
(0.079) 

0.031 
(0.021) 

0.729 
(0.036) 𝜆 0.034 (0.002)   0.038 (0.002)   

Log L 1439    1372    
Panel 2:Test for Joint-Significance of the Insignificant Coefficients (Wald Test) 

Wald  Value df P-Value Value df P-Value 
Test 
Statistic 54.517 3 0.000 39.157 3 0.000 

Note: The table reports the estimates for the parameters of the transition equation of the AFNS 
and DNS models. Panel 1 presents the estimates for the mean vector and transition matrix along 
with the decay parameter 𝜆 estimate. The standard errors are in parenthesis. Bold entries denote 
that parameter estimates are significant at the 5% level. The second panel presents the results 
of the Wald-test for the joint significance of individually insignificant coefficients in transition 
matrix. The null hypothesis is that insignificant coefficients are simultaneously equal to zero. The 
test statistic is Chi-square with their respective degrees of freedom (df). P-Value is the probability 
value of the test statistic. 

To compare the transition errors, the estimates of covariance matrix Σ of both models are 
reported in table 3. The covariance matrix Σ of the AFNS is transformed into one-month 
conditional volatility matrix 𝑄 computed by approximating the integral in (25) numerically and 
the computed matrix is presented in (30). The variance as well as most of the covariance 
terms in volatility matrix of the AFNS seem considerably smaller than the DNS case. This 
may be due to the yield-adjustment term in the affine model, because the yield adjustment 
term is the key difference in the update step between the affine and non-affine classes. While 
the statistical framework in both classes are very different, the yield-adjustment term is the 
main economical difference.  

 𝑄 ൌ 10ିହ ൈ ൭ 2.1219 1.2961 െ2.75381.2961 1.0003 െ1.7397െ2.7538 െ1.7397 3.5913 ൱ (30) 

 

The corresponding estimate of yield-adjustment term 𝐴, which differentiates the affine class 
from the standard Nelson-Siegel family of models, is plotted in the bottom-right panel of 
figure 2. The yield-adjustment term increases the flexibility of the curve fitting, especially at 
longer maturities. The yield-adjustment term is monotonically decreasing and plays a 
significant role at the long end of the curve. The shape is almost similar to the one reported 
in Christensen et al. (2011) for the correlated AFNS model.  
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Figure 2 
Time series plot of estimated factors and their empirical proxies  

 
Note: Model-based level, slope and curvature (i.e., estimated factors) are plotted against the data 
based level, slope and curvature (i.e., empirical proxies), where level is defined as the 10-year 
yield, slope as the difference between the 10-year and 3-month yields and curvature as two times 
the 2-year yield minus the sum of the 10-years and 3- month zero-coupon yields. Rescaling of 
estimated factors is based on Diebold and Li (2006). The bottom right pane shown the estimate 
of the yield-adjustment term in AFNS model. 

Table 3 
Estimates of covariance matrix  𝚺  

 Σሺ. ,1ሻ Σሺ. ,2ሻ Σሺ. ,3ሻ Σሺ. ,1ሻ Σሺ. ,2ሻ Σሺ. ,3ሻ 
 AFNS DNS Σሺ1, . ሻ 0.184 

(0.005) 
  1.292 

(0.093) 
  Σሺ2, . ሻ 0.003 

(0.001) 
0.691 

(0.0161) 
 0.002 

(0.014) 
0.549 

(0.108) 
 Σሺ3, . ሻ 0.251 

(0.180) 
-0.147 
(0.002) 

0.022 
(0.000) 

0.735 
(0.622) 

0.341 
(0.125) 

0.971 
(0.063) 

Note: The table shows the estimates of the covariance matrices of the innovations in the state 
equations for both models, i.e., AFNS and DNS. The standard errors are in parenthesis. Bold 
entries denote that parameter estimates are significant at the 5% level. 

The three latent factors 𝛽ଵ௧, 𝛽ଶ௧ and 𝛽ଷ௧  categorized as level, slope and curvature factors 
respectively are plotted in figure 2 for both AFNS and DNS models along with their empirical 
proxies, i.e., level (L), slope (S) and curvature (C), which are computed from the observed 
zero-coupon yield data as: (i) the level factor is defined as the 10-year yield (ii) the slope is 
the difference between the 10-year and 3-month zero rates, and (iii) the curvature is two 
times the two-year yield minus the sum of the 10-year and 3-month zero coupon yields. The 
pairwise correlation of empirically defined level factor and 𝛽መଵ௧ (model based) is 𝜌ො൫𝐿௧, 𝛽መଵ௧஺ிேௌ൯ ൌ
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0.8812,   and 𝜌ො൫𝐿௧, 𝛽መଵ௧஽ேௌ൯ ൌ 0.9876. The estimated pairwise correlation between the slope 
and 𝛽መଶ௧ is 𝜌ො൫𝑆௧, 𝛽መଶ௧஺ிேௌ൯ ൌ െ0.8569 and 𝜌ො൫𝑆௧, 𝛽መଶ௧஽ேௌ൯ ൌ െ0.9541, while for the 
curvature ሺ𝐶ሻ and 𝛽መଷ௧ is 𝜌ො൫𝐶௧, 𝛽መଷ௧஺ிேௌ൯ ൌ 0.4846 and 𝜌ො൫𝐶௧, 𝛽መଶ௧஽ேௌ൯ ൌ 0.4727. The pairwise 
correlations for the DNS for all three factors is higher than that of the AFNS, which can be 
attributed to the yield adjustment term. There is very small difference in estimated correlation 
for the 𝛽መଵ௧ and 𝛽መଶ௧, but somewhat larger difference for the 𝛽መଷ௧ with their empirical proxies. 
Overall, the analysis suggests that the estimated factors and the empirically defined factors 
follow the same pattern across time, and therefore, 𝛽መଵ௧, 𝛽መଶ௧ and 𝛽መଷ௧ can be called level, slope 
and curvature factors, respectively. 
To further investigate the in-sample performance of the models, the descriptive statistics of 
the residuals, including root mean square errors (RMSE), mean absolute errors (MAE) and 
autocorrelation at various displacements are reported in table 4 for some specific maturities.  
The results show that the residuals autocorrelations across time for all maturities are 
considerably small of the DNS model as compared to AFNS model. Based on table 4 alone 
it is very difficult to rank the models, but it does underscore the evidence that the more 
sophisticated AFNS model outperforms the DNS in terms of MAE as well as RMSE except 
the 3-month maturity, however, the improvement is very small for short maturities. The AFNS 
has lowest RMSEs for 13 out of 15 maturities. Overall, the results in table 4 suggest that a 
more flexible model is required to fit the yield curve accurately. Besides the residuals 
analysis, in figure 3 we plot the average observed yield curve and the fitted curves by the 
two competing models. 

Table 4 
Descriptive statistics of the yield curve residuals  

Maturity MAE RMSE 𝜌ො ሺ1ሻ 𝜌ො ሺ6ሻ MAE RMSE 𝜌ො ሺ1ሻ 𝜌ො ሺ6ሻ 
 AFNS Model DNS- Model 

3 0.614 0.789 0.843 0.435 0.592 0.757 0.605 0.219 
6 0.570 0.739 0.793 0.358 0.577 0.739 0.605 0.243 
9 0.527 0.708 0.733 0.275 0.552 0.716 0.597 0.272 

12 0.525 0.694 0.661 0.192 0.540 0.711 0.602 0.314 
18 0.360 0.503 0.423 0.048 0.550 0.723 0.641 0.380 
24 0.298 0.452 0.268 -0.093 0.601 0.785 0.693 0.380 
30 0.317 0.489 0.350 -0.060 0.644 0.833 0.749 0.446 
36 0.390 0.576 0.480 0.029 0.699 0.895 0.788 0.481 
48 0.469 0.680 0.516 0.036 0.716 0.915 0.801 0.464 
60 0.561 0.789 0.541 0.029 0.744 0.936 0.812 0.479 
72 0.508 0.754 0.526 0.013 0.730 0.924 0.812 0.428 
84 0.451 0.695 0.484 -0.020 0.718 0.910 0.806 0.432 
96 0.458 0.690 0.458 -0.078 0.699 0.891 0.795 0.436 

108 0.491 0.708 0.446 -0.042 0.715 0.893 0.803 0.479 
120 0.436 0.690 0.401 -0.068 0.708 0.900 0.810 0.486 

Note: The table presents summary statistic of the residuals for different maturity times of the 
measurement equation of AFNS and DNS models, using monthly data 2002:08–2016:12. RMSE 
and MAE are the root mean squared errors and mean absolute error respectively. 𝜌ො ሺ𝑖ሻ denotes 
the sample autocorrelations at displacements of 1 and 6 months. The number of observations 
is 173. 
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Both models are almost coinciding and capture yield dynamics well, however, the DNS 
model suffers consistently from underestimating the average yield curve almost for all 
maturities. The AFNS seems to be more attractive to fit the curve as it coincides at some 
points with the empirical observed average yields. 
The overall conclusion from in-sample fit is consistent with the findings in Christensen et al. 
(2011) and Ullah (2017) as the affine model outperforms the counterpart non-affine model. 
The results show that the AFNS is able to fit the yield curve more accurately than the DNS. 
The great success of the affine model may be due to the yield-adjustment term in the 
observation equation of the yield curve and higher persistency of factors in the state 
equation.  

5. Out-of-sample Forecasting 
The attractive performance in terms of in-sample fitting of the yield curve of the affine model 
based on the Nelson-Siegel framework as compared to the standard DNS provides 
motivation to evaluate the future predictive accuracy of the two models in comparison to 
some benchmark forecast model. As a benchmark we consider AR model of yields to 
compute the ℎ-period ahead forecasts.  

Figure 3 
Mean yield curves and absolute residuals  

 
Note: The figure shows the empirical yield curve and the mean estimated yield curves and 
averaged absolute residuals of the AFNS and DNS yield curve models. The average fitted curves 
are computed by substituting the smoothed estimates of the yield curve factors and the estimated 𝜆 in the corresponding signal equations. The left pane shows the mean yield curves, while 
averaged absolute residuals are shown in right pane. The averaged absolute residual are 
computed as the mean of absolute residuals across time for 15 distinct maturities. 

For computing the forecasts with the standard DNS and AFNS, the estimation period runs 
from August 2000 until December 2011, leaving an out-of-sample evaluation period from 
January 2012 until December 2016. Three forecast horizons, ℎ ൌ 1,6 and 12 months ahead, 
are considered. 
As the yield curve in the Nelson-Siegel frameworks is mainly governed by the three latent 
factors, therefore, we compute the ℎ-step ahead forecasts of the yield curve factors and 
subsequently insert the forecasted factors in the yield curve function to predict the yields for 
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the desired horizon. In the first stage, we estimate each model over a subsample using the 
state space specification presented in (20-22) and in next stage, predict the ℎ-period ahead 
latent factors at each point of time in the out-of-sample forecast period by iterating forward 
the transition equation ℎ-period ahead using the filtered state factors obtained in the previous 
stage. The ℎ-period ahead predicted state vector is computed as: 

 𝔼ሺ𝑋௧ା௛|𝜁௧ሻ ൌ ൭෍ 𝐻෡௜௛ିଵ
௜ୀ଴ ൱ 𝐶መ ൅ 𝐻෡௛𝑋෠௧|௧ (31) 

 

where 𝐶መ and 𝐻෡ are the parameters estimates of the state and 𝑋෠௧|௧ is the most recent available 
estimated factors vector in the update step. For the AFNS model ൫∑ 𝐻෡௜௛ିଵ௜ୀ଴ ൯𝐶መ ൌൣ𝐼 െ exp൫െ𝐾෡ℎ൯൧𝜃෠ being (3×1) vector and 𝐻෡௛ ൌ exp൫െ𝐾෡ℎ൯ is (3×3) matrix. Subsequently, the 
result from (31) is inserted in (20) to compute the ℎ-month ahead forecasted yield dented 
as 𝑅෠௧,௧ା௛. The forecast errors for the ℎ-step ahead forecast are calculated as: 𝑒௧,௧ା௛ ൌ 𝑅௧ା௛ െ𝑅෠௧,௧ା௛, where 𝑅௧ା௛ is the actual observed yield vector at 𝑡 ൅ ℎ and the 𝑅෠௧,௧ା௛ is the (N×1) 
vector of the ℎ-month ahead forecasted yields in period 𝑡. 
 

5.1. Term structure forecast results 
The results of forecast accuracy of the three competing models for the forecast horizons ℎ ൌ1, 6 and 12 months are presented in table 5. We examine a number of descriptive statistics 
for the forecast errors, including MAE, RMSE and autocorrelation.  
The results of one month ahead forecast show that both Nelson-Siegel specifications 
outperform the AR(1) yield forecasts in terms of all descriptive features of the forecasts 
errors, whereas, the standard DNS performs slightly better than the affine based extended 
model until 24-month maturities. The MAE and RMSE for most of the maturities of the AFNS 
are a bit smaller than the DNS beyond 24-month maturities, however, in terms of the errors 
autocorrelation the DNS outperforms the affine setup.  
The results for the 6 months and one year ahead forecasts show that the forecast errors 
become larger as we lengthen the forecast horizon. Similar to the one-month ahead forecast, 
the Nelson-Siegel type models outpace the benchmark AR(1) forecasts in all three 
descriptive features for ℎ ൌ 6, and 12. Between the two Nelson-Siegel specifications, the 
order of superiority runs from AFNS to DNS for the long and medium term maturities, 
whereas DNS outpaces the AFNS until 6-month and 24-month maturities for ℎ ൌ 6 and 12 
months ahead forecast horizons respectively. For ℎ ൌ 6 months, the MAE and RMSE for the 
AFNS are reasonably smaller than DNS except for first two maturities, while beyond 24-
month, for ℎ ൌ 12. However, the errors persistency is similar in both setups.  
In summary, the out-of-sample forecast results of the two Nelson-Siegel specifications seem 
reasonably accurate in terms of lower forecast errors than the benchmark AR(1) model of 
yield. Moreover, for all three forecast horizons the simple DNS model outperforms the AFNS 
model at the short end of the curve, whereas the AFNS dominates the former for medium 
and long term maturities. The poor performance of the affine framework in comparison to 
DNS at the short end of the curve may be attributed to the yield adjustment term. 
5.2. Out-of-sample forecast accuracy comparisons 
To evaluate the overall quality of the out-of-sample forecasts of the models, we use the trace 
root mean squared prediction error (TRMSPE) criterion, which summarizes the forecasting 
performance of each model. TRMSPE is not a formal statistical test but rather is a standard 
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criterion, which is widely used to evaluate forecast accuracy. To assess the forecast 
accuracy in terms of standard statistical test of all three models, we employ the Diebold and 
Mariano (1995) test for loss differential quadratic errors. 

Table 5 
Out-of-sample forecasting results  

 AFNS model DNS model AR(1) model 
Maturity MAE RMSE 𝜌ො ሺ1ሻ MAE RMSE 𝜌ො ሺ1ሻ MAE RMSE 𝜌ො ሺ1ሻ 

1 month ahead forecasting 
3 1.197 1.416 0.885 0.419 0.456 0.850 1.072 1.274 0.937 
6 1.079 1.271 0.872 0.470 0.516 0.764 1.092 1.315 0.943 

12 0.918 1.094 0.856 0.422 0.487 0.945 1.117 1.342 0.944 
24 0.573 0.670 0.658 0.611 0.717 0.988 1.140 1.405 0.949 
36 0.475 0.597 0.583 0.802 0.928 0.809 1.160 1.394 0.950 
60 0.515 0.650 0.619 0.855 0.967 0.806 1.169 1.385 0.954 
96 0.594 0.724 0.702 0.816 0.935 0.799 1.191 1.419 0.951 
120 0.561 0.689 0.691 0.766 0.895 0.792 1.011 1.253 0.950 

6 months ahead forecasting 
3 2.001 2.274 0.847 1.754 2.061 0.780 2.111 2.300 0.937 
6 1.754 2.069 0.853 1.703 2.013 0.794 3.166 2.357 0.947 

12 1.603 1.948 0.859 1.612 1.923 0.816 2.175 2.373 0.948 
24 1.417 1.832 0.866 1.847 2.280 0.880 2.217 2.422 0.942 
36 1.438 1.860 0.879 1.995 2.447 0.906 2.242 2.432 0.944 
60 1.462 1.907 0.879 2.054 2.465 0.917 2.309 2.500 0.959 
96 1.390 1.722 0.875 2.035 2.408 0.926 2.290 2.505 0.953 
120 1.379 1.738 0.876 1.974 2.358 0.925 3.127 2.355 0.954 

12 months ahead forecasting
3 4.079 4.436 0.954 1.927 2.506 0.881 3.128 3.292 0.937 
6 3.731 4.095 0.956 1.957 2.417 0.892 3.175 3.349 0.941 

12 3.388 3.749 0.959 1.942 2.268 0.906 3.218 3.394 0.944 
24 2.742 3.269 0.956 1.852 2.304 0.935 3.225 3.416 0.931 
36 1.489 2.032 0.960 1.977 2.463 0.952 3.227 3.411 0.936 
60 1.278 2.021 0.952 1.974 2.447 0.956 3.266 3.456 0.946 
96 1.670 2.033 0.941 1.955 2.400 0.958 3.246 3.457 0.936 
120 1.630 2.037 0.939 1.887 2.334 0.961 3.156 3.380 0.948 

Note: The table reports the results of out-of-sample forecasting using state-space specification 
for the AFNS and DNS models along with the AR(1) forecasts of yields for various maturities. We 
estimate the models recursively from 2002:08 to the time that the forecast is made, beginning in 
2012:01 and extending through 2016:12. We define forecast errors at 𝑡 ൅ 𝑖 as  𝑅௧ା௜ሺ𝑚ሻ െ𝑅෠௧,௧ା௜ሺ𝑚ሻ, where 𝑅෠௧,௧ା௜ሺ𝑚ሻ is the 𝑡 ൅ 𝑖 month ahead forecasted yield at period 𝑡, and we report the 
mean absolute errors (MAE) and root mean squared errors (RMSE) of the forecast errors, as well 
as autocorrelation coefficient at first displacement. 
 

5.2.1. Trace root mean squared prediction error 
For evaluating the forecast performance, the full sample of forecast errors, i.e., for all 15 
maturities and forecast periods, is considered to compute the trace root mean squared 
prediction error (TRMSPE). TRMSPE combines the forecast errors of all maturities and 
summarizes the performance of each model, thereby allowing for a direct comparison 
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between the models. Detailed description of TRMSPE is given Ullah et al. (2013). The results 
of TRMSPE for all three models are given in table 6. At first sight the results shows that the 
forecasts becomes worse as the forecast horizon becomes longer, and the Nelson-Siegel 
based yield curve specifications outperform the benchmark AR(1) yield forecasts for all 
forecast horizons. Moreover, the performance of AFNS based specification is better than the 
DNS at 1- and 6-month ahead forecast horizons, while the latter outpaces the former at ℎ ൌ12. 

Table 6 
TRMSPE results for out-of-sample forecasts accuracy comparisons  

Models 1-Month Forecasts 6-Month Forecasts 12-Months Forecasts 
AFNS 0.8200 1.5015 1.7829 
DNS 0.6248 1.5706 1.6963 
AR(1) 1.3922 2.4372 3.4251 

Note: The table reports the Trace Root Mean Squared Prediction Error (TRMSPE) results of out-
of-sample forecasts accuracy comparison for horizons of one, 6 and 12 months for the AFNS, 
DNS and AR(1) yield curve models. In computing the TRMSPE, the full sample of forecast errors, 
i.e., all 15 maturities are considered. 

5.2.2. Diebold–Mariano test 
The drawback of using TRMSPE statistics is that these are single statistics summarizing 
individual forecasting errors over an entire sample. Although frequently used, unfortunately 
they do not give any insight as to where in the sample models make their largest and smallest 
forecast errors. We, therefore, employ the Diebold and Mariano (1995) test to assess the 
forecast performance for each maturity for the different pairs of models. Based on the 
TRMSPE criterion, we make three pairs of models to make the comparison, i.e., (i) the DNS 
against the AR(1) model, (ii) AFNS against the AR(1)  model, and (iii) AFNS against the DNS 
model. 
To test for statistically significant differences in forecasting accuracy between competing 
models we apply the Diebold and Mariano (DM) test. Given a pair of two competing 
forecasting models, i.e., 1 and 2, the difference between the two quadratic loss functions is 
computed as 𝑑௧ ൌ 𝑒ଵ௧ଶ െ 𝑒ଶ௧ଶ , where 𝑒ଵ௧ଶ  and 𝑒ଶ௧ଶ  are the quadratic loss functions of the two 
competing models, the DM test statistic is computed as: 

 𝐷𝑀 ൌ 𝑑̅ට2𝜋𝑓መௗሺ0ሻ/𝑇  ~𝑁ሺ0,1ሻ (32) 

 

where 𝑓መௗሺ. ሻ is the consistent estimate of the spectral density of 𝑑௧ and 𝑑̅ is the sample mean 
of 𝑑௧ for 𝑡 ൌ 1,2, … , 𝑇. We apply the Diebold and Mariano (1995) test to forecast errors of 
three pairs of models and the results are presented in table 7 for all three forecast horizons. 

Table 7 
Diebold-Mariano test-statistic  

Maturity DNS against the AR(1) AFNS against the AR(1) AFNS against the DNS 
 ℎ ൌ 1 ℎ ൌ 6 ℎ ൌ 12 ℎ ൌ 1 ℎ ൌ 6 ℎ ൌ 12 ℎ ൌ 1 ℎ ൌ 6 ℎ ൌ 12 

3 -2.931 -3.588 -2.220 -1.942 1.449 0.092 5.265 0.437 1.973 
6 -3.283 -4.323 -3.079 -0.367 2.781 1.092 5.321 0.111 1.444 
9 -2.427 -2.170 -5.990 -0.318 -0.563 -1.088 5.216 -0.025 1.388 
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Maturity DNS against the AR(1) AFNS against the AR(1) AFNS against the DNS 
12 -3.349 -2.945 -2.874 -2.348 -0.453 -1.110 4.815 -0.049 1.372 
18 -2.084 -4.329 -2.097 -1.176 -0.206 -1.993 2.828 -0.414 1.018 
24 -1.988 -5.669 -3.314 -2.746 -0.261 -2.381 -1.327 -0.711 0.726 
30 -6.250 -3.306 -2.438 -6.865 -3.672 -2.205 -3.298 -0.784 -2.571 
36 -2.198 -2.768 -2.373 -4.747 -4.359 -2.296 -4.354 -0.846 -0.429 
48 -2.402 -2.919 -3.484 -5.192 -3.336 -2.221 -4.378 -0.874 -0.329 
60 -2.188 -1.997 -3.482 -5.805 -5.390 -2.245 -4.025 -0.822 -0.239 
72 -2.159 -2.850 -4.478 -6.364 -2.347 -2.182 -4.034 -0.916 -3.057 
84 -4.589 -2.005 -3.492 -7.462 -2.267 -3.000 -4.001 -1.982 3.184 
96 -3.952 -2.832 -3.492 -5.753 -3.130 -2.807 -2.715 -2.206 3.424 

108 -2.725 -3.951 -3.506 -2.484 -2.324 -2.748 -1.791 -2.246 -0.541 
120 -3.427 -3.891 -3.441 -4.107 -2.380 -2.819 -2.530 -3.103 -0.355 

Note: The table presents Diebold–Mariano forecast accuracy comparison test results for the three 
different pairs of models, i.e., the AFNS, DNS models and AR(1) forecasts for 1, 6 and 12 months 
ahead forecasts. The null hypothesis is that the two forecasts have the same root mean squared 
error. Bold entries denotes that the test-statistic is statistically insignificant at 10% significance 
level. 

Besides the statistical significance, the sign of the test statistic in each column conveys 
important information about the performance and priority of one model over the other. In 
each pair of models 𝑒ଵ௧ is the vector of forecast errors of the model mentioned first in each 
column (in top row) of table 7, while 𝑒ଶ௧ corresponds to the errors of the model mentioned 
later, i.e., in the first column 𝑒ଵ௧ denotes the forecast errors vector of DNS model 
and 𝑒ଶ௧ corresponds to the forecast errors of AR(1) model. Therefore, the negative sign in 
the first column shows the priority of DNS over AR(1) and positive sign indicates the 
superiority of AR(1) over DNS model. All other columns should be read in the same way.  
The results of the first and second pair point towards a significant difference in squared 
errors of the Nelson-Siegel based models, i.e., DNS and AFNS, than the AR(1) model for all 
three forecast horizons except for few maturities in the case of AFNS model at the short end 
of the curve. The DNS unanimously outperforms the AR(1) as all test-statics are negative 
and statistically significant. In case of the AFNS model, some of the test-statistics at the short 
maturities are insignificant but still negative and for medium and long maturities, the AFNS 
outpaces the AR(1) model. The Nelson-Siegel based yield curve specifications therefore, 
come with more accurate forecasts than the AR model of yields. 
Between the two Nelson-Siegel frameworks, the DNS perform better than the AFNS until 
18-month maturity, while the latter outperforms the former beyond 24-month maturities for 
the one-month ahead forecasts. For ℎ ൌ 6 and 12 both are equally well for the short and 
medium term maturities, while AFNS has significantly lower forecast errors than the DNS at 
the long end of the yield curve. 
Overall the results of the preceding two criterions indicate that: (i) Nelson-Siegel class either 
with or without arbitrage restriction outperforms the naïve time series forecasts, such as AR 
and random walk, (ii) affine based model outperforms their counterpart DNS model at all 
forecast horizons for medium and long term maturities, whereas DNS has slightly lower 
RMSEs at the short end of the yield curve. This should not really come as a surprise when 
remembering the conclusion in the analysis of in-sample fit that AFNS has some problems 
in fitting the curve for some short maturities. Results are in line with Christensen et al. (2011), 
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who conclude that affine term structure models can have very good performance for out-of-
sample. 

6.  Conclusion 
The term structure of interest rates plays a key role in financial markets. The current long 
end of the yield curve holds useful information for forecasting future short yields and 
economy activity (Piazzesi, 2010). Market participants use these forecasts for pricing 
financial assets, taking investment decisions, and managing financial risks. Central banks 
use them to make monetary policy decisions. Accurate modeling and precise forecasting of 
the yield curve serves policymakers in evaluating past, current, and future economic 
conditions and helps market participants in taking better financial decisions. 
This study considers the affine based dynamic Nelson-Siegel model of the term structure of 
interest rate and compares it empirically with the standard dynamic Nelson-Siegel in terms 
of in-sample fit as well as out-of-sample forecast accuracy in the Pakistani bond market 
environment. The models are illustrated in the state-space framework and the Kalman filter 
algorithm is employed to estimate and make out-of-sample forecasts, using the monthly time 
series of yields between 08:2002 and 12:2016. 
The results of the in-sample fit show that introducing the no-arbitrage restriction in the model 
improves the in-sample fit of the Nelson-Siegel model in emerging markets as it does in the 
developed markets. The success of the affine based models may be due to the yield-
adjustment factor in the observation equation and higher persistency of factors in the state 
equation. Overall the results suggest that the affine based model is able to fit the yield curve 
more accurately than the DNS for most of the maturities. Largely, the findings from the in-
sample-fit are consistent with the findings in Christensen et al. (2011). 
Regarding term structure forecasting, we conclude that both specifications of the yield curve 
based on the Nelson-Siegel functional form can replicate the interest rates' general trends 
in emerging economies. The out-of-sample forecast results of the Nelson-Siegel 
specifications seem reasonably accurate in terms of low forecast errors and outperform the 
benchmark naive time series forecast models of yields, such as AR(1) and random walk. 
The forecast errors of the AFNS model are reasonably smaller than the standard DNS model 
for medium and long maturities at all three forecast horizons, whereas the DNS wins the 
horse race at the short end of the curve. Moreover, we encounter larger forecast errors in 
the short end of the curve for the both DNS as well AFNS model, however, the DNS forecasts 
are slightly better than AFNS.  
The conclusion that comes to mind from the out-of-sample superior predictive power of the 
AFNS as compared to the DNS, is the role of yield adjustment term and the richer 
specification in the AFNS framework. The analysis indicates that the small values of the 
adjustment term is the contributing factor to the poor forecast performance of the AFNS for 
the short maturities. Furthermore, the off-diagonal elements in the transition matrix, 𝐾, and 
volatility matrix does not seem as important as they are in the DNS framework. The AFNS 
under alternative specification of the transition and volatility matrix may imply better out-of-
sample forecasts for the short maturities.  
Overall, the results show that there is no single forecast model that dominates its 
competitors. This is due to the fact that different models outperform others, depending on 
time horizon ahead, maturity and forecast period.  
Furthermover, short rates are highly influenced by macroeconomic factors and it seems that 
AFNS as well as DNS out-of-sample performance may be further boosted by including 
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relevant macroeconomic factors in the model. However, the results of this study can serve 
as a benchmark for future research in which observable macroeconomic information could 
be incorporated in the model. We think that both these issues are natural next steps in our 
future research. 
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Appendix-I: Coefficients and latent variable in 
the general state-space form 

In the statistical formulation of the models in section 3.3, the matrices and vectors for the 
state and observations equations should be considered as follows. The matrices and vectors 
in state-space system in (20-22) for the simple DNS model should be defined as:  
 𝐵 ൌ Λሺ𝜆ሻ: (N×3) 𝑋௧ ൌ ሺ𝛽ଵ௧, 𝛽ଶ௧, 𝛽ଷ௧ሻᇱ: (3×1) 𝑤௧ ൌ 𝜀௧: (N×1) 𝐶 ൌ ሺ𝐼ଷ െ 𝐹ሻ𝜇: (3×1) 𝐻 ൌ 𝐹: (3×3) 𝑢௧ ൌ 𝑣௧: (3×1) Ω ൌ Ω: (N×N) 𝑄௧ ൌ Σ௩: (3×3) 𝐴ሚ ൌ 0 
 
Furthermore, for the AFNS model the system in (20-22) should be defined as: 
 𝐵 ൌ Λሺ𝜆ሻ: (N×3) 𝑋௧ ൌ ሺ𝛽ଵ௧, 𝛽ଶ௧, 𝛽ଷ௧ሻᇱ: (3×1) 𝑤௧ ൌ 𝜀௧: (N×1) 𝐶 ൌ ሺ𝐼ଷ െ 𝑒ି௄୼௧ሻ𝜃: (3×1) 𝐻 ൌ 𝑒ି௄୼௧: (3×3) 𝑢௧ ൌ 𝑣௧: (3×1) Ω ൌ Ω: (N×N) 𝑄௧ ൌ Σ௩: (3×3) 𝐴ሚ ൌ െ𝐴: (N×1) 
 
In both specifications Λሺ𝜆ሻ is (N×3) matrix of loadings,  𝛽௧ ൌ ሺ𝛽ଵ௧, 𝛽ଶ௧, 𝛽ଷ௧ሻᇱ is the (3×1) vector 
of latent factors of the yield curve, 𝜇 and 𝜃 are (3×1) vectors of factors mean, and 𝐹 and 𝐾 
are (3×3) full-matrices of parameters. The 𝜀௧ and 𝑣௧ are (N×1) and (3×1) innovations vectors 
of the observation and state equations respectively, Ω is (N×N) covariance matrix of the 
measurement equation innovations, and Σ௩ is (3×3) lower triangular covariance matrix of the 
state innovations. 
 




