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ON GENERALIZED PARETO

DISTRIBUTIONS

I. MIERLUS-MAZILU

Abstract

This paper discusses a set of algorithms for numerical simulation of the Generalized 
Pareto Distribution and the propositions they are based on. The numerical results and 
the histogram of generating data are also presented. 
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1. Introduction 

The Generalized Pareto Distribution (GPD) was introduced by Pikands (1975) and 
has sine been further studied by Davison, Smith (1984), Castillo (1997, 2008) and 
other.

If we consider an unknown distribution function F  of a random variable X , we are 

interested in estimating the distribution function uF  of variable of x  above a certain 

threshold u . The distribution function uF  is so called the conditional excess 

distribution function and is defined as: 

uxyuXyuXPyF Fu 0,| ,

where: X  is random variable, u  is a given threshold, uxy  are the excesses 

and Fx  is the right endpoint of F .

We verify that uF can be written in: 

uF

uFxF

uF

uFyuF
yFu

11
.

Pickands (1975) posed that for a large class of underlying distribution function F  the 

conditional excess distribution function yFu , for u  large, is well approximated by: 

ukyFyFu ,,,

where : 
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for uxy F,0 , if 0k , and 
k

y ,0  , if 0k . ,,kF  is the so-called 

Generalized Pareto Distribution. If x  is defined as yux  the GPD can also be 

expressed as a function of x .

Definition 1 Castillo (1997): The random variable X  has a generalized Pareto 

distribution ),(kGPD  if the cumulative distribution function of X  is given by 
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where:  and k  are scale and shape parameters, 0x  for 0k  and 
k

x ,0

for 0k .

Remark 1: 

When 0k , the ),(kGPD  reduces to the exponential distribution with mean’s: 

Exp .

When 1k , the ),(kGPD  becomes  uniform : ,0U .

When 0k , the ),(kGPD  reduces to the cakPareto ,,1  distribution of the 

second kind.

Definition 2 Castillo (2008): The random variable X  has the cakPareto ,,1

distribution of the second kind if the cumulative distribution function of X  is given by 

acx

k
cakxF

)(
1,,; 1

1 .

2. Algorithm for Numerical Simulation 

2.1. The inverse method 

This method is based on the following lemma (Smirnov-Hincin). 
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Lemma 1: Let X  be a random variable having F , the cumulative distribution 

function, inversable, and let U  be a uniform random variable on 1,0 . Then 

UFY 1
 has the same cumulative distribution function with  X  (e. g. Y  is a 

sample of X ).

Proof: ),())(())(( 1 yFyFUPyUFPyYP U being uniformly 

distributed on 1,0   -  q.e.d. 

According to Lemma 1, we can write the following algorithm. 

AI. {Algorithm for numerical simulation of the ),(kGPD  random variable using the 

inverse method} 

S0 Make suitable initializations; Input: ,k ;

S1 if 0k  then 

   repeat 

  Generate 1,0UU ; UX ln
1

  until stop condition 
 else 

  if 1k  then 

    repeat 

    Generate 1,0UU ; UX :

   until stop condition 
  else 

   input: 
k

a ;

   repeat 

   Generate 1,0UU ; )1( kUaX

   until stop condition 
S2 Stop 

2.2. The method based on the transformation of the standard exponential 
variable

We consider the case when 0k  and 
k

x ,0 , according to Remark 1.  

Proposition 1: Let 1ExpY . Then 
kYe

k
X 1  is a ),(kGPD  random 

variable.

Proof:
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and 0k   -  q.e.d. 

Remark 2: Since 1ExpY , with the inverse method we have UY ln ,

1,0UU  and thus we obtain: 
kUUk U

k
e

k
e

k
X

k

111 ln)ln(
 . 

Based on the proposition above, we have the following algorithm: 

AEx. {Algorithm for numerical simulation of the generalized Pareto distribution 

),(kGPD  starting from a standard exponential random variable} 

S0 Make suitable initializations; Input ,k ; Calculeazã 
k

 ; 

S1 repeat 

  Generate 1,0UU ;
kUX 1:

 until stop condition 

S2 Stop 

2.3. The mixture method

We consider the case when 0k , 0  and 0x .

Proposition 2: Castillo (1997) Let

kx

exGX 1, with 0x , 0 ,

0k  and let 0 ,  a sample of the random variable 
k

Gamma
1

,1,0 .

Then the random variable X  obtained from mixing the two random variables X  and 

 is a ),(kGPD  random variable. 

Proof:

kx

eX 1 , e

k

k
1

1

)
1

(

1

We calculate the cumulative distribution function of the random variable X :
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11   -  q.e.d. 

Based on the proposition above we can write the following algorithm: 

AMm. {Algorithm for numerical simulation of the ),(kGPD  distribution by the 

mixture method} 

S0 Make suitable initializations; Input 
kk

k ,
1

,,

S1 repeat 

 Generate 
k

Gamma
1

,1,0

 Generate 1,0UU  {U  and  are independent}; 

 Deliver UX ln:

until stop condition; 
 S2  Stop 

The random variable X  is obtained by the inverse method, as before. 

There are several methods for simulation of Gamma distribution. Here we will remind 
only some of them.

Therefore, the next problem is how we can generate X  a ,10,Gamma  random 

variable.
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2.3.1. The case when the parameter is greater than one

A rejection enveloping algorithm 

This method is based on the following theorem: 

Theorem 1 V duva (1977): Let Y  be a random vector, to be generated, having the 

probability density function 
mRyyf ),(  and Z , another random vector, which can 

be generated, having the probability density function 
mRzzh ),(  such as 

0)0))(( ZhP . Assume that there is a positive and finite constant  such as: 

1,,
)(

)( mRx
xh

xf

If U  is an uniform 1,0  random variate, independent from Z , then the conditional 

probability density function of Z , given that 
)(

)(
0

Zh

Zf
U  is )(yf .

The rejection procedure based on this theorem is sometimes called the enveloping 

procedure and the acceptance probability is 
a

pa
1

.

If in Theorem 2 we consider the case 1m , and that 

1),(
)(

1
)( ),0(

1 yIeyyf y
 and 12,0,

))1((
1

)(
2

cz

c
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k
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meaning that )(zh  is the Nonstandard Cauchy Distribution, centered in 1 with 

12c and K  is a norming constant. It is shown that  

a
pe

K
a a

1
,)1(

)(

1 )1(1

and hence the average number of trials (meaning that pairs of ZU , ) for obtaining a 

sampling value of Y  is )()1( 1)1(eeen .

Note that ne  for e1 , which illustrates a good performance of the 

algorithm.

A disadvantage of this algorithm is that it uses three elementary functions 

log,tan, xe  which may increase computing time and anyway will reduce accuracy. 

Therefore, Devroye (1986) have proposed a composition-rejection algorithm based on 

decomposition of the gamma density )(yf  in the form: 

1),()()( 212211 ppyfpyfpyf

0)(1 yf  if by ,0
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0)(2 yf  if ,by

where: )(1 yf  is enveloped by the truncated normal on b.0  and )(2 yf  is enveloped 

by the truncated exponential on ,0 , b  being properly selected.

This is one of the best algorithms for generating a gamma random variable when 

1 .

An algorithm based on the ratio-of-uniforms 
A new fast and more accurate algorithm for generating a standard gamma variate with 

the parameter 1  will be presented. This algorithm is based on the following: 

Theorem 2 V duva (1977): If the probability density function f  of the random vector 

X  is in the form )(
1

)( xh
H

xf ,
mR

dxxfH )( ,
1

1
)(
mc

md ,
mm RR 1:

is in the form:  
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and 0,...,,|,...,, 1010 mm vvvvvvC  is bounded, and if V  is a random vector 

uniformly distributed on C , then the random vector )(VY  has the probability 

density function  f. 

In Theorem 2 we consider 1m  and 
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then, using Theorem 2, after some calculations, we have 

1

1
1

1

11
1

1

1

1

00

1
,0,1,0 c

c
c

c

cc e
c

c
baeba

e
c

c
c

cp

c

c

c

a

1

1

1

1

1

1
11

Now the final algorithm can be described easily. 
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An interesting question concerns the finding of the “best” constant 0c  to maximize 

the acceptance probability )(cpa . The analytical treatments of this problem 

necessitate complicated calculations. Therefore we designed a special procedure 

which, starting from the initial value 10c , searches (using a small step of variation 

of c ,) a positive value c  in the neighborhood of this initial value, to give a greater 

probability. It results that 0lim cpa , which shows that the algorithm has a bad 

behavior for large values of . However, for not very large values of  (e.g. 34 ) it 

is faster than the algorithm based on a Cauchy envelope, as computer tests have 
shown.

2.3.2. The case when the parameter 10

A rejection algorithm 

This algorithm uses theorem 1 where 

)()(,10),(
)(

1
)( ),0(

1

),0(

1 zIezzhyIeyyf zy

(meaning that h  is a standard Weibull probability density function) which gives 

a
pea

yh

yf
a

1
,,

)1(

1
)(

)(

)(
1)1(

In our application we have to take into account that the behavior of the rejection

algorithm is good mainly for 9999.012.0  as computer tests have shown   

(V duva, 1977).

3. Numerical Results 

I this paper, we implement all these three algorithms: AI{Algorithm for numerical 

simulation of the ),(kGPD  random variable using the inverse method}, 

AEx{Algorithm for numerical simulation of the generalized Pareto distribution 

),(kGPD  starting from a standard exponential random variable}, AMn{Algorithm for 

numerical simulation of the ),(kGPD  distribution by the mixture method}. 

Numerical application was performed using Mathcad. 
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Xreturn
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k

i 1 Nfor

Xreturn

The general algorithm AI The general algorithm AEx

The general algorithm AI was called 1000 times. We consider 5.2,2k  in 

Figure 1 and 5.2,0k  in Figure 2. 
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Fig. 1. Fig. 2 

The general algorithm AEx was called 1000 times. We consider 5.2,2k  in Fig 

3. Also in Fig 4 we use AMn algorithm called 1000 times, with 5.2,2k .
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Fig. 3. Fig. 4 
The histogram obtained on generated selection shows that the empirical distribution is 
similar to the theoretical distribution. 

4. Example and Conclusions 

The GPD has applications in a number of fields, including reliability studies, in the 
modelling of large insurance claims, as a failure time distribution. Also it plays an 
important role in modeling extreme events. A model is frequently used in the study of 
income distribution and in the analysis of extreme events, e.g. for the analysis of the 
precipitation data, in the flood frequency analysis, in the analysis of the data of 
greatest wave heights or sea levels, maximum winds loads on buildings, in the 
maximum rain fall analysis, in the analysis of greatest values of yearly floods, breaking 
strength of materials, aircraft loads, etc. 

The GPD has been quite popular not only for flood frequency analysis but for fitting 
the distribution of extreme natural events in general. 

Every portfolio of risk policies incurs losses of greater and lower amounts at irregular 
intervals. The sum of all the losses (paid & reserved) in any one-year period is 
described as the annual loss burden or simply total incurred claims amount. An 
insurance company generally decides to transfer the high cost of contingent capital to 
a third party, a reinsurance company. 

It is possible to generate randomly a number of claims per year and to calculate each 
claim severity through the Generalized Pareto distribution. In this case if we calculate 
the economic risk capital defined as the difference between the expected loss, defined 
as the expected annual claims amount, and in this case the 99.93th quantile of the 
distribution corresponding to a Standard & Poor’s A rating. 

The analysis highlights the importance of a reinsurance program in terms of “capital 
absorption & release” because what happens in the tail of the loss distribution - where 
things can go very wrong and where the inevitable could sadly happen - has relevant 
impact on the capital base. This implicitly demonstrates that reinsurance decisions 
based on costs comparison could lead to wrong conclusions. 
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