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ABOUT A NONLINEAR TWO-
PARAMETER PREDICTION MODEL USED 
FOR INVESTIGATING THE DISTRIBUTION 
OF CO2 EMISSION IN EUROPE 

�tefan �TEF�NESCU*  

Abstract 

The growth rate of different economies in Europe depends strongly on the production 
and, especially, on the consumption of energy resources. As an empirical rule, the 
development of such economies is closely interrelated with a consistent CO2 emission 
into atmosphere. However, this aspect has a negative impact on the quality of life of 
the people all over the world.
In the present article we propose a methodology to improve the estimator accuracy of 
a nonlinear two-parameter prediction model used in Albu (2007) for studying the 
impact of the greenhouse effect on the macroeconomic growth. In order to prove the 
validity of the methodological proposals, a stochastic Monte Carlo simulation 
technique was applied. 

Keywords: nonlinear prediction model, parameter estimation, stochastic Monte Carlo 
simulation, the distribution of CO2 emission
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1. Introduction 

 Many forecasting studies concerning the adequate activities for the 
environment protection have as a main target to establish, for different countries, the 
appropriate expression of the dependence relationship between the CO2 emission 
into atmosphere and the consumption of the energy resources in those countries [Albu 
(2007); Zhihong, Dongxiao, Wang (2008)].
The prediction analysis is concentrated on the impact of the greenhouse effect against 
the economic growth in the future [Albu (2007)]. 
For modeling the process of climate change and its economic consequences it is very 
important to define the real problems, to establish the goals and how to approach the 
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problem under prediction uncertainty, to evaluate the efforts and the limitations of the 
forecasting model, to suggest political advises [Schroder, Lingner (1999)].   

The main difficulties in the climate forecasting arise from a huge dimensionality of the 
modeling system and from the accuracy estimation of the prediction model [Palmer 
(2003)]. 

As a rule, a complex mathematical calculus is used to evaluate the likeness of a 
proposed theoretical model to the reality. We mention here especially the nonlinear 
and the linear regression predictions, more complex dispersion studies or the Fourier 
analysis of the dynamic time series, all suggested hypothesis being finally validated by 
applying different statistical tests [Pisnichenko, Tarasova (2007)].  

Albu (2007) established high correlations between the level of economic development, 
the energy consumption and the CO2 emission into atmosphere. 

Thus, for a long-time forecasting, the existence for the European countries of some 
robust nonlinear dynamic relations was proved, having the following form:  

 
y g x a b� ( ; , )

  (1) 
where:   

 g x a b
ab
a x

( ; , ) �
�

,     x � 0  (2) 

y  being, for example, the CO2 emission per unit of GDP and the explanatory variable 

x  signifies the GDP per capita [Albu (2007)]. 

The specific expression (2) was imposed by the inhibitor role of the GDP per 
inhabitant variable x  [Albu (2007)]. 

The shape of the forecasting nonlinear function (2) depends on the concrete values of 

the parameters a � 0  and b � 0  (see Graph G1). 

 

G1. The graph of the function  g(x ; a , b)  for different values 
of the parameters  (a , b) 

 
Rewritting the function g x a b( ; , )  in the form 
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,     x � 0   (3) 

we interpret the parameter a  as a scale factor. 

The significance of the parameter b  is imposed by the relation b g a b� ( ; , )0 , that is 

the intersection point of the graph y g x a b� ( ; , )  with the Oy  axis. 

In the following, we will estimate the unknown values of the parameters a b,  when n  

independent observations ( , )x yi i , 1� �i n  , about a ( , )X Y  random vector are 

given.  

More exactly, the quantity yi  will be interpreted as an independent variate of the 

random variable Y , when the variable X  has taken the value xi , 1� �i n .  

2. The Linearization of the Prediction Model 

When the values xi  are known, we will predict for the random variable Y  the 

quantities � ( ; , )y g x a bi i� .  

Then, from (2) we have 

 

1 1
� ( ; , )y g x a b

a x
abi i

i� �
�

,   1� �i n   

and hence 

       
1
�y

c d x
i

i� � ,  1� �i n  (4) 

where:  

 
c

b
�

1
    
d

ab
�

1
 (5) 

Approximating the value iy/1  by the quantity iŷ/1  we get an error ie , 

 

e
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c dxi
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In this case, the global error h c d#( , )  is given by the expression  
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The minimum value h c d# # #( , )  for the expression h c d#( , )  is attained when 

[Papoulis (1990)]:  
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Taking into consideration the relations (5), the estimates a b# #,  for the parameters 

a b,  are given by the expressions 

 
#

#
#

d
ca �      #

#

c
b 1

�  (9) 

3.  Solving the Nonlinear Prediction Model 

In fact, the model (1) asserts that for an xi  value of the explicative variable X  we will 

forecast for the random variable Y  the quantity � ( ; , )y g x a bi i� . 

The prediction errors �i  have in this approach the form  

 �i i i i iy y y g x a b� � � �� ( ; , ) ,   1� �i n  (10) 

Using the ordinary least squares principle, we shall obtain the estimates ( *, *)a b  for 

the unknown parameters ( , )a b  of the nonlinear model (2) [Bard (1974); Papoulis 

(1990)]. More precisely, h a b* ( *, *)  is just the minimum value for the function 

h a b* ( , )  which characterizes the mean square error of the statistical model, that is 
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The vector ( *, *)a b  is the solution of the following nonlinear system [Bard (1974); 

Demidovich, Maron (1981)] 
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Since we have the restrictions a � 0  , b � 0  , the previous system is equivalent to  
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where:  
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Applying the classical Newton-Raphson method [Demidovich, Maron (1981), p.156-

157; Bard (1974)], the solution ( *, *)a b  of the nonlinear system (13) can be obtained 

as a limit of the vector string ( , )a bj j , j N�  , which result after an iterative process 

 a lim a
j

j* �
��

      b lim b
j

j* �
��

 (15) 

Thus, primarily the starting point ( , )a b1 1  is chosen in a neighborhood of the 

unknown solution ( *, *)a b . After that, the vectors ( , )a bj j  will be "adjusted" 

successively with the quantities ( , )� �j j  , that is 

 a aj j j� � �1 �      b bj j j� � �1 �  (16) 

The "corrections" ( , )� �j j  are the solution of the next linear system 
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where the functions h h h h11 12 21 22, , ,  have the expressions  
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 (18) 

The stopping rule of the iterative process (16) after k  steps is defined by the following 
restrictions 
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In fact, the quantities�1 0* �  , �2 0* �  characterize the accuracy of the 

approximation ( , )a bk k  which will be used instead of the real solution ( *, *)a b  of the 

nonlinear system (13). 

4. Comparing the Estimates (a
#
, b
#
), (a*,b*) 

We will apply the stochastic Monte Carlo simulation in order to establish the accuracy 

of both estimations ( , )# #a b  and ( *, *)a b  of the unknown parameters ( , )a b  which 

define the forecasting model (1) [see Gentle (1998)]. 

For this reason, in the subsequent the values of the parameters a b,  will be fixed. 

If the quantities xi  are given,1� �i n , we can get by simulation the corresponding 

sample { }yi i n1� �  , from the random variable Y . Thus, the observations yi  are 

generated by using the formula 

 y
ab
a x

zi
i

i�
�

� � ,      1� �i n   (20) 

where: z z z zn1 2 3, , , ... ,  are independent variates of the random variable Z  which 

has a univariate standard normal distribution. A statistical interpretation of the model 
(20) is discussed in Papoulis (1990), p. 402-411. 

Remark 1. In general, the computer software has specialized routines for generating 
independent observations from a normal random variable that has a zero mean and a 
variance equal to one [Gentle (1998)]. 

The expression (20) allows us to produce the data yi , 1� �i n , used in the model 

(1), by considering normal distributed errors with a null mean and a dispersion equal 

to � 2
. 

For analyzing the statistical characteristics of the estimators )b,a( ## , *)b*,a( , the 

results obtained from t � 30  stochastic simulations were used. In the subsequent, we 

denoted by s , 1 � �s t  , the index of the current simulation. 

The stopping rule (19) for the iterative estimation process (16) is characterized by the 

thresholds� �1 2
710* *� � �

, the variable k  designating the number of iterations to 

obtain *)b*,a( . 

Practically, to get the n  values yi  of the predicted random variable Y  ( formula (19) 

) we operated with : 3�a  , 50�b  , 100�n  , 1�� ixi  , ni ��1 , 

� �302502015010050 .;.;.;.;.;.�� . 
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Table 1 

 The estimates (a
#
, b
#
), (a* , b*)  for the parameters  (a , b)  

 ( a = 3 ,  b = 50 ,  ��= 0.1 ,  t = 30 ,  n = 100 ). 

s a
#
 b

#
 a* b* k 

1 2.98850 49.76794 2.99435 50.04658 2 

2 3.21397 47.29605 3.01439 49.95521 3 

3 2.54977 58.10341 3.00014 50.05816 4 

4 2.77021 53.76374 3.00265 49.88341 3 

5 3.17905 47.66534 3.01499 49.85243 3 

6 3.21948 46.84254 2.99839 50.03502 3 

7 3.32547 45.24840 2.98959 50.00302 3 

8 3.08390 48.74467 2.99009 50.08879 3 

9 2.42182 60.59708 2.99181 49.99430 4 

10 3.07461 48.75707 2.98444 50.10936 3 

11 1.83516 79.19920 3.00252 49.96051 5 

12 2.89003 51.52567 2.97698 50.19892 3 

13 2.80303 52.73853 2.98511 50.07161 3 

14 2.56380 57.85376 3.01657 49.92045 4 

15 2.48452 58.96065 3.00003 49.97555 4 

16 3.11193 48.48708 3.00728 49.93429 3 

17 2.79961 53.50813 3.01296 50.00346 3 

18 3.46323 43.86223 3.00266 49.90776 4 

19 3.19100 47.34065 3.00010 49.99464 3 

20 3.68131 41.62699 3.01275 49.94651 4 

21 2.72500 54.43240 3.00236 49.88515 3 

22 3.72142 41.09663 3.00442 50.00420 4 

23 1.77943 80.97946 2.99094 50.06170 5 

24 3.21984 46.82018 3.00152 49.98713 3 

25 2.54722 58.15209 3.00922 49.91311 4 

26 2.82978 52.46293 3.00949 49.92842 3 

27 3.40784 44.95617 3.02006 50.00120 4 

28 2.68467 55.16939 2.98250 50.00517 3 

29 2.84962 52.26876 3.00234 49.89335 3 

30 1.51649 94.56732 3.00723 49.98230 5 
  

All the t � 30  stochastic simulation results obtained for � � 01.  are listed together in 

Table 1. 

The graphs 1G  and 2G  illustrate the fluctuations of the estimates *)a,a( #  and 

*)b,b( #  when 3�a  and 50�b  were considered in (2). 

Remark  2. The iterative process (16) is convergent to the solution ( *, *)a b  of the 

system (13) if the starting point ( , )a b1 1  is in a close neighbor of ( *, *)a b  (to pursuit 

the explanations from Bard (1974) and Demidovich, Maron (1981)).  
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We strongly recommend to take a a1 � #
 , b b1 � #

 as a starting point for the iterative 

algorithm (16), since the estimation ( , )# #a b deduced  after the linearization of the 

forecasting function (2) is a good approximation for ( *, *)a b  (to compare the 

corresponding values in Table 1). 

The convergence of the iterative process (16) after less than k �10  steps is assured 

if we choose ( , )# #a b  as starting point (Table 1). In this case, the corrections 

( , )� �j j  obtained from (17) become very small, practically zero (to compare in Table 

1 the estimations ( *, *)a b  with the real values ( , )a b ; always it resulted in k � 5  

iterations). 

Remark 3. If a data sample of size 2n  is taken by adding to the initial data ( , )x yi i , 

1� �i n , the same set of data, then the values of the functions 

h h h h h h1 2 11 12 21 22, , , , ,  will be multiplied by two (see the form of the expressions 

(14) and (18)). Thus, in order to avoid large coefficients for the linear system (17) all 

the functions h hp pq,  will be adjusted with the multiplicative factor 1/ n . 

Taking into account all the results deduced after t � 30  stochastic simulations (Table 

1), we conclude that for every Monte Carlo simulation s , 1� �s t , the estimates 

( , )* *a bs s  in ks  iterations are always more accurate than the estimates ( , )# #a bs s  

obtained from a linearization procedure of the forecasting function (2). 

 

G2. The estimates  a# , a*  deduced at the simulations s 

(Table 1) 

 
 

This aspect is also pointed out in Tables 2 and 3, which listed the averages 

k,b,a,b,a **##  and the dispersions k~,b~,a~,b~,a~ **##  of the values sss
#
s

#
s k,b,a,b,a ** , 

1� �s t , resulted after t � 30  Monte Carlo simulations. More exactly, for any string 

w w w wt1 2 3, , , ... ,  of t  real values the following notations were used: 
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Tables 2 and 3 present the fluctuations of the indicators w w, ~
 (formulas (21)), which 

depend on the dispersion � 2
 of the residuals from the simulation model (20), where  

 � �k,b,a,b,aw **##�   ,   
 !
"

��
�� k~,b~,a~,b~,a~w~ **## .  

We observe that usually an increase in the dispersion � 2
 implies the decrease in the 

precision of the estimators )b,a( ##  or *)b*,a( .  

Moreover, for any dispersion value 2� , the accuracy of the estimates *)b*,a(  is clearly 

better, by comparing with the )b,a( ##  values (to analyze the quantities listed in 

Tables 2 and 3).   
 

G3. The estimates  b# , b*  deduced at the simulation  s  
(Table 1) 

 
 

Table 2  
The average w  for t = 30  values ws ( formula (21)) 

�
2
 a

#
 b

#
 a* b* k 

0.05 2.9074 51.7978 3.0001 49.9993 2.80 

0.10 2.8644 54.0931 3.0009 49.9867 3.47 

0.15 3.0655 49.9380 2.9994 50.0048 3.47 

0.20 2.8470 54.8027 3.0013 50.0251 3.77 

0.25 2.1935 145.6521 2.9983 50.0461 5.03 

0.30 1.9056 119.9814 3.0024 49.9603 6.03 
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Table 3 

 The dispersion w~  for t = 30 values ws (formula (21)) 

�
2
 a

#
 b

#
 

a* b* k 

0.05 0.05744 18.1812 0.000022 0.00217 0.4414 

0.10 0.26799 139.8853 0.000119 0.00584 0.5333 

0.15 0.21610 55.1619 0.000312 0.02192 0.3954 

0.20 0.41925 145.4728 0.000573 0.04381 0.5989 

0.25 1.43813 66757.0458 0.000702 0.04746 4.9299 

0.30 1.87744 63197.3733 0.000945 0.08996 4.7230 

 

Obviously, if we use very distinct estimated values )b,a( ##  and *)b*,a( , significant 

forecasting differences result. Concretely, considering the estimates obtained at the 

simulation s � 30  in Table 1, that is 

 ).,.()b,a( ## 5794521�       ).,.(*)b*,a( 9849013�   

we get the prediction functions )x(g #  and )x(*g  , x � 0  ,  

 xa
ba)b,a;x(g)x(g #

##
###

�
��      

x*a
*b*a*)b*,a;x(g)x(*g

�
��  

The graphs of the functions )x(g # , )x(*g  are very different, especially for small 

values of the explanatory variable X  (compare the shape of the two graphs in G4). 

 

G4. Graphs of the functions  g#(x) ,  g*(x)  

(Table 1,  s = 30) 
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5. Conclusions 

Taking into consideration the features of the CO2 emission process, Albu (2007) 
proposed a forecasting function of type (2).  

The accuracy of the prediction process depends essentially on the statistical qualities 

of the estimators for ( , )a b  parameters. These parameters ensure the flexibility of the 

statistical model (1) (compare the graphs G1 for different ( , )a b  vector values). In 

fact, a  is a scale parameter for the explanatory variable X  (formula (3)) and the 

significance of the parameter b  is suggested by the relationb g a b� ( ; , )0 . 

Applying the linearization transformation (4) to the nonlinear regression (1) we 

deduced the estimations ( , )# #a b  defined by formulas (7)-(9). These estimates are 

enough accurate (to compare with the data listed in Table 1). 

Other estimation ( *, *)a b  for ( , )a b  parameters was deduced by solving directly the 

nonlinear system (13). The approximation vector ( *, *)a b  of the real solution ( , )a b  

for the system (13) resulted iteratively by applying the classical Newton-Raphson 

method. Imposing the stopping rule (19) with� �1 2
710* *� � �

, the convergence of 

the iterative algorithm is ensured in less than 6 steps (to pursue the k  index values in 
Table 1). 

If we consider ( , )# #a b  as starting point, the iterative process (16) converges very 

fast. The stochastic Monte Carlo simulations proved how important is to select an 

adequate starting point ( , )a b1 1  (see also Remark 2). Choosing an arbitrary starting 

point ( , )a b1 1 , the convergence speed of the Newton-Raphson algorithm (16) became 

very slow (more than 200-300 steps) and, sometimes, non-convergence situations 

resulted, too. Thus, we suggest ( , ) ( , )# #a b a b1 1 � . 

Applying a Monte Carlo simulation technique we determined the accuracy of the 

estimates ( , )# #a b  and ( *, *)a b . The simulation process, defined by the statistical 

model (20), was always repeated t � 30  times.  

In all the simulated cases, we obtained a very high precision for the estimates 

( *, *)a b  as compared to the initial evaluations ( , )# #a b  of the parameters ( , )a b  

(see Table 1 and the graphs G2 and G3).  

The differences between the forecasting quantities g x#( )  and g x* ( )  are higher for 

small values of x , the predicted values becoming closer when x  increases (graph 

G4). 

The precision of the estimations ( , )# #a b  decreases substantially when the 

dispersion � 2
 of the errors in the stochastic simulation model (20) is increased. This 
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aspect is illustrated in Tables 2 and 3 if we pursue the statistics concerning the 

estimations a b# #,  (to compare these evaluations with a � 3  and b � 50 ). 

In addition, a larger dispersion � 2
 for the residuals in the prediction model (2) 

imposed more iterations to the Newton-Raphson algorithm (see the fluctuations of the 

variable k  in Tables 2 and 3). 

In conclusion, we recommend using first the linearization procedure (4) to get the 

estimates ( , )# #a b  for ( , )a b  parameters (the formulas (7)-(9)). After that, the initial 

vector ( , )# #a b  will be adjusted successively by applying the Newton-Raphson 

procedure (the formulas (16)) until the stopping condition (19) becomes true. Finally, it 

results in a very good estimate ( *, *)a b  for the unknown parameters ( , )a b  which 

ensures the flexibility of the forecasting model (2). 
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