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Abstract
The current work undertakes an overview of the forecasting volatility with high 
frequency data topic, attempting to answer to the fundamental latency problem of 
return volatility. It surveys the most relevant aspects of the volatility topic, suggesting 
advantages and disadvantages of each alternative in modeling. It reviews the concept 
of realized volatility and explains why forecasting of volatility is more effective when 
the model contains a measure of intraday data. A discrete and a continuous time 
model are defined. Sampling methods at different frequencies are reviewed, and the 
impact of microstructure noise is considered. Details on procedures employed in the 
literature with respect to modeling and forecasting using realized models are 
discussed, while an empirical exercise will prove the advantages of using measures of 
high frequency data. 
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1. General issues on modeling volatility 
At the same time with the markets’ development in terms of size, complexity and 
sophistication, there was need for better modeling of volatility in financial and 
economic time series. Over time, it became also evident that returns at high 
frequencies are difficult to accurately predict and that the volatility of such returns is 
better forecastable. This and the remarkable importance of volatility in applied 
contexts are the central reasons for which financial econometrics dedicated that much 
attention to modeling financial volatility, playing an essential role in modern pricing 
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and risk management theory. I n the study of financial economics, one of the most 
researched topics that appears to be essential in describing the fluctuation of any 
financial or economic time series seems to be the distributional pattern of returns, no 
matter it is about exchange rates, stocks, bonds, etc. Conclusions that may be 
grasped from the study of conditional distributions may say a lot on how to price a 
specific instrument, how to allocate funds according to a specific portfolio, how to 
measure risk, performance and, finally, how to undertake the management decision 
process. The distributional pattern is highly connected to other features of a portfolio, 
like conditional return fractiles that determine the probability that extreme jumps occur 
in portfolio value. 

The most important characteristic of a distribution of a conditional return series is the 
structure of the second moment. As such, in modeling volatility the frequency at which 
the data was selected became important, over time an increasing preoccupation for 
sampling data at lower intervals being observed. This allowed that more information 
be incorporated into the models, becoming obvious that sampling at shorter intervals 
may be beneficial to both short and long term horizon forecasting. 

The serial correlation in the volatility of the financial asset returns paved the way to an 
extremely rich literature and research that have been written on the topic of modeling 
and forecasting volatility. Such volatility is typically modeled in empirical contexts with 
daily data starting from GARCH

3
-type models or stochastic volatility processes that 

consider volatility as a latent, unobserved variable. Although returns may be measured 
with minimal measurement error, since they are constructed from face prices of assets, 
and according to that they may be analyzed with ordinary time series techniques, 
volatility needs more careful and complex computational modeling due to the latent 
property of volatility. In this regard Merton (1980) observed that the conditional variance 
over a fixed period can be expressed, arbitrarily but still satisfactorily accurate, under a 
sum of squared realizations, when data are available at such high sampling frequency. 
Andersen and Bollerslev (1998) also provided an argument for the same conclusion, 
saying that ex post daily foreign exchange volatility can be optimally estimated by 
aggregating 288 squared five-minute returns. Actually, the latent character of conditional 
variance is the one that makes it unobservable and impossible to directly measure, 
being one of the most important obstacles in modeling financial volatility. As such, this 
variance needs to be rather estimated from past data, which opens the way towards a 
competition of models that better describe such measure. Among methodologies that 
estimate such conditional variance, the ARCH

4
 Model proposed by Engle (1982), the 

GARCH Model proposed by Bollerslev (1986), and the stochastic volatility model 
proposed by Taylor (1986) are the most known and most applied ones.

A common approach to deal with the fundamental latency problem of return volatility is 
to conduct inferences on volatility through strong parametric assumptions. Another 
option is to employ models designed for option pricing in order to transform back the 
prices of derivatives into forecasts of implied latent volatility over a specific horizon. 
One important drawback of such methods is that they rely heavily on the models 
chosen to forecast volatility; this means that forecasts may vary significantly according 
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to the choice of the model. Another drawback is that they include in the estimated 
measure a volatility risk premium that fluctuates in time, the effect being that their 
forecasts on the underlying asset volatility are often biased. Another flaw of such 
methodologies results from the backward looking methodology employed. This 
methodology implies that the current and future volatilities are estimated starting from 
the return standard derivation of backward looking rolling samples, which returns are 
most often calculated from daily observations. Because of this, models are less 
prepared to represent volatility shocks that currently happen and even less to 
anticipate them. However, backward looking models are not meaningless, as volatility 
is persistent and thus offers some useful information on ongoing patterns, but volatility 
also has a mean reverting character due to which the unit root type forecasts are not 
optimal, since they are conditionally biased given the history of the past returns.

Despite the large variety of the models that seek solutions to relatively similar 
questions, most of the models designed to estimate and forecast latent volatility fail to 
describe adequately significant issues as regards the fluctuation of financial returns 
(Bollerslev (1987), Carnero, Peña and Ruiz (2004) and Malmsten and Teräsvirta 
(2004)). One such important feature of latent volatility that is not satisfactorily 
encapsulated in the models is the low, though diminishing autocorrelation in the 
squared returns related to the high excess kurtosis of returns. Adequate modeling of 
return dynamics is required as accurate forecasting is essential in risk management or 
decision taking processes. As such, the assumption of the existence of Gaussian 
standardized returns has been contested in many studies, being replaced by heavy-
tailed distributions. 

The increasing opportunity to get access to higher frequency data than the daily data 
one allowed researchers to experiment more straightforward methods to model 
volatility by constructing daily time series out of intraday data. This step allows treating 
“volatility” as observed, rather than latent, to which standard time-series techniques 
may be applied. Then, since the addition of intraday sampled squared returns 
provides a consistent estimator of the actual daily volatility, the forecasting 
performance of the estimated models could be evaluated more accurately than in the 
case of methodologies that employ squared daily returns as volatility measures. 
Among all the existing models, the Autoregressive Fractionally Integrated Moving 
Average (ARFIMA) and the Heterogeneous Autoregressive (HAR) models emerged 
as the most popular models in the whole literature, capable of capturing the observed 
long-memory pattern of volatility and empirically outperforming more traditional 
counterparts as GARCH and stochastic volatility models. 

Realized volatility notion solves many of the drawbacks mentioned above as regards 
the traditional methods that forecast volatility by using squared returns. In the 
presence of no transaction costs, with continuously observed price, the realized return 
variance may be modeled with no error by using realized returns. As such, when we 
control for the measurement error, the ex post volatility eventually becomes 
observable from latent, which allows to be modeled directly rather than being 
estimated from a latent process. Moreover, the realized variance is correlated with the 
concept of cumulative expected variation of the returns over a specific horizon for a 
large set of underlying no- arbitrage diffusive data generating processes. On the 
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contrary, it is not possible to link on short terms the actual realized return to the 
expected returns if not making supplementary assumptions. There have been 
extensive studies on the expected return volatility but little on what concerns the 
expected mean return from high frequency asset prices. This perspective has 
produced a significant effort from the researchers as regards obtaining and empirically 
using realized volatility estimates disseminated from high frequency data. As such, in 
the today markets, the realized volatility field is a well-established practice to use 
intraday returns to build up ex post volatility measures. Due to larger access to high-
quality transaction data over a well-diversified panel of financial assets, it is 
unavoidable that this topic be further investigated and more tested in wider empirical 
contexts over the future. 

However, sampling at higher frequency has some disadvantages too. It has been 
proved that such a choice is a trade-off between obtaining higher accuracy in latent 
volatility description, theoretically optimized when the frequency sampling is the 
highest possible one, and the microstructure noise that may arise through bid-ask 
bounce, asynchronous trading, price discreteness, infrequent trading, etc. Some 
references discussing this issue are Madhavan (2000), Biais, Glosten and Spatt 
(2005), and Hansen and Lunde (2005). 

Some authors [Andersen and Bollerslev (1998), Patton (2005), Hansen and Lunde 
(2005)] have used such measure of volatility in order to estimate the out-of-sample 
forecasting performance of GARCH models. Starting from pioneering studies led by 
Barndorff-Nielsen and Shephard (2002), Meddahi (2002) and Andersen, Bollerslev, 
Diebold and Labys (2003), more recent papers have discussed and proposed 
methodologies to isolate information obtained from realized volatility measures 
constructed from high frequency data, and further using it to better model daily (or 
lower frequency) returns. Aït-Sahalia, Mykland and Zhang (2005), Zhang, Mykland 
and Aït-Sahalia (2005), Bandi and Russell (2005, 2006), Hansen and Lunde (2006) 
tried also to provide solutions to the inconsistency problem. 

In what it follows there will be offered necessary argumentation in the favor of 
integration of information compounded from high-frequency data into the measuring, 
modeling, estimating and forecasting daily and lower frequency volatility of financial 
and economic time series. The largest part of the literature on the topic of volatility 
forecasting has concentrated so far on obtaining and using highly restrictive and 
complex parametric versions of GARCH models or of stochastic volatility models, 
which soon have found their limitation in terms of predictability, especially at higher 
frequency distributions of returns.

However, in the last decade, the advancement in volatility modeling has stalled in 
some aspects. The larger access to high-frequency data moved away the attention 
from further modeling of daily volatility with daily data, and thus the effect of better 
data inputs was negligible in what concerns improving model designs. It has been 
empirically demonstrated that the standard models designed to provide estimates by 
using daily observations were improper in functioning with intraday values. New 
models specified for the intraday data failed in capturing the information of the 
interdaily movements as well, for which reason their daily forecasts were not as 
precise as expected. In the context of not having an empirically superior proved 
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alternative as concerns modeling day or intraday volatility by using high-frequency 
data, the standard practice continued to use the traditional modeling tools in order to 
obtain relatively good estimates of daily values, although intraday data were available. 
Another important factor is that the emphasis has continuingly been placed on low-
dimensional volatility modeling, and mainly univariate. Although multivariate variants 
of the existing ARCH and GARCH models have been proposed by Bollerslev, Engle 
and Nelson (1994), Ghysels, Harvey and Renault (1996), and Kroner and Ng (1998), 
the multitude of constraints and computational problems they raise make them 
computationally difficult to be applied in empirical contexts. Therefore, few 
applications deal with more assets at the same time. As a consequence, practitioners 
have avoided to search for solutions to highly practical relevant multidimensional 
problems, and continued to rely on simple exponential smoothing methods combined 
with the assumption of normally distributed conditional returns. An example of such 
models which found large applicability in business contexts is the RiskMetrics 
proposed by J.P. Morgan; although it employs counterfactual assumptions and proves 
to be most of the times suboptimal, it functions sufficiently well, its main quality being 
the model feasibility, simplicity, short implementation time characteristic of high-
dimensional contexts. 

In the above described context, the realized volatility methodology has been proposed 
trying to improve modeling process in two regards: the first one is that it proposes a 
rigorous methodology that fully exploits the information contained in the high-
frequency data and which proves efficient in forecasting daily return values; and 
second, the model offered distinguishes itself through simplicity and facile 
implementation in high-dimensional environments. These desiderata are met through 
such method called realized volatility, which computes useful information from high-
frequency intraday return data. All works written by Anderson, Bollerslev, Diebold and 
Labys (2001) and Barndorff-Nielsen and Shephard (2001) argue that the realized 
volatility measures are not just unbiased ex-post estimators of daily volatility, but also 
asymptotically free of any measurement error. Realized volatility provides a 
comprehensive framework for integration of high-frequency intraday return data into 
the modeling, measuring and analysis of daily or lower frequency volatility and 
frequency distributions. 

Reviewing articles which discussed the topic of realized volatility are extremely 
heterogeneous in their scope, but as well in the way they comprised and delivered 
information in the literature. Some papers comprise extensive reviews of the literature, 
rather limiting to a general discussion of volatility, like Poon and Granger (2003) and 
Andersen, Bollerslev, Christoffersen and Diebold (2006). A commonality in the general 
reviews is not discussing the microstructure noise problem. Instead, this problem has 
been discussed in Bandi and Russell (2006), paper which places an emphasis on the 
economic determinant of the noise component. McAleer and Medeiros (2008), in 
exchange, address to the problem of measurement error. Barndorff-Nielsen and 
Shephard (2007) reviewed the papers by putting a stronger emphasis on 
nonparametric estimation of volatility and on the frictionless case with/without jump 
effects. 

In what it follows there will be presented some aspects on modeling and forecasting 
realized volatility in different settings by using high frequency data.
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2. Univariate setting of realized volatility. A discrete 

time model 

The realized volatility theory is highly linked to the accessibility of stock price data at 
arbitrarily high frequencies. As such, it is natural to model volatility as a continuous-
time problem, even if we allow ultimately, for simplicity, sampling at discrete intervals. 
We focus on one risky asset with a price that moves continuously, but which may be 
observed at equally-spaced discrete points in time over a certain interval, in which a 
unit interval relates to the primary time period over which we consider to measure the 
volatility of the asset return, like, for example, one trading day.

The iterations in sections 2 - 4 closely follow the structure of McAleer and Medeiros 
(2008). We propose at the beginning the case of a simple discrete time model, 
following to build upon later extensions of it. In such a model the daily returns of any 
asset are characterized by the following equation: 

where  represents a series of independently and normally distributed random 

variables which have a zero mean and variance one, .

We make the following assumptions: the data is sampled at its highest frequency (tick-

by-tick) in a trading day t,  is a grid which contains all data points 

observed, and  is the i-th price observation in day t, with  being the 

total observation number in day t. We denote

with ,  is the ith intraperiod return of day t such that  

and .

We further define  as the sigma-number generated by all 

information to the ith quote in day t. Therefore,  is the information set which exists 

at the beginning of day t. It results then that and .

We may define then the realized variance as the sum of all high frequency intraday 
observations (returns) of the form 

We may write then the squared daily return as 

,
such that 
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When the correlation between the intraday returns is zero, it results that 

It results that in one day t there exist two unbiased estimators of the return variance, 
namely the squared return and the realized variance. 

It can be further derived that 

as

The above calculation shows the core of the realized volatility theory: the summation 
of the squared intraday returns would provide a better estimation of the latent daily 
return variance than the sum of the squared daily returns. Furthermore, if returns are 
sampled at any random frequency, we can formulate the average daily variance 
without any measurement error, as it follows 

The only constraint for the dynamics of the intraday return variance formulation as 
above is to have the following, for any :

Such result has been explored by Andersen and Bollerslev (1997, 1998), Andersen, 
Bollerslev and Lange (1999), and Martens (2001, 2002).

3. Realized variance modeling in a continuous time 

setting and no microstructure noise 

3.1 Main setting 
We set up at the beginning some necessary assumptions to describe the context of 
the model. We operate in a continuous-time diffusive setting, for simplicity ruling out 
price jumps, and assume a frictionless market. In the beginning, let’s assume that in a 
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trading day t, we have the following time diffusion process of a time series formed 
from the logarithmic prices of any asset: 

We have called above  as the logarithmic price at time ,

stands for the drift component,  represents the instantaneous volatility 

(standard deviation) and  represents the standard Brownian motion. In order 

not to create a leverage effect,  is orthogonal to .

Andersen, Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen and Shephard 
(2002) indicated that for daily returns defined as  , they are 

Gaussian conditionally distributed on  , with 

sigma-algebra information set generated by sample paths of  and  

 such that 

McAleer and Medeiros (2008) define further the term  as the 

integrated variance, an ex post measure of daily volatility. This is actually what is 
sought to be obtained, as the measure (as precise as possible) of the true latent 
volatility.

3.2. Modeling with various sampling schemes 
The realized volatility approximates the quadratic variation pretty well as the sampling 
frequency increases. Nevertheless, this simple statement complicates further the 
problem according to the following two stances. The first one is that even for the most 
liquid assets a continuous price is not available. This constraint leads to an 
unavoidable discretization error in the estimates of the realized volatility which 
determines us to recognize the existence of a measurement error. Although by 
subsequent reiteration we may estimate the magnitude of such errors, according to 
the continuous asymptotic theory, this inference is always subject to sampling 
distortions and is totally true only when price jumps are disregarded. The second 
issue refers to the large panel of microstructure effects which induces spurious 
autocorrelations in the high frequency sampled return series. This category includes 
the effects of rounding, price discreteness, bid-ask bounces, the trades which occur 
on various markets, the steady (gradual) response of process to a block trade, 
asymmetric information contained in order of different size, spreads positioning 
according to the dealer inventory control, strategic order flows and data recording 
flaws. The spurious autocorrelations emerging from these sources may increase the 
estimates of the realized variance and thus generate a traditional type of bias-variance 
trade off. Although the general recommendation is to use the highest sampling 
frequency as its optimal for efficiency captured signal, this also tends to bias the 
estimate of the realized volatility.

The above described trade-off may be plotted through the volatility signature diagram 
which illustrates the sample mean of the realized volatility estimator over a long time 
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period as a function of the sampling frequency. As such, the long time duration 
diminishes the impact of sampling variability and therefore, when the microstructure 
noise is not considered, the plot should appear as an approximately horizontal line. 
Nevertheless, it is observed in empirical applications that in plots with transaction data 
sampled from highly liquid stocks we will find spikes at high sampling frequencies and 
more moderate reductions in order to stabilize at frequencies at 5-40 minute range. 
On the contrary, the reversal occurs for returns built up from bid-ask quote midpoints 
as asymmetric adjustments of the spread determine positive serial correlation and 
bias the signature diagram downward at the highest sampling frequency. As such, for 
the case of the illiquid stocks, the inactive trading produces positive return serial 
autocorrelation, which induces the signature diagram increase at lower sampling 
frequencies. Aït-Sahalia, Mykland and Zhang (2006), Bandi and Russell (2007) and 
Andersen, Bollerslev, Diebold and Labys (2003) have further developed this topic by 
trading off efficient sampling with bias-inducing noise in order that optimal sampling 
schemes be obtained. 

Another solution proposed in order to deal with the trading-off described above is to 
use alternative quadratic variance estimators that would be more efficient and less 
sensitive to the microstructure noise. Huang and Tauchen (2005) and Andersen, 
Bollerslev and Diebold (2007) are among them, suggesting that staggered returns and 
realized bipower variation (the latter for non-parametrically measuring the jump 
component in asset return volatility) be used, effective in noise reduction, while 
Andersen, Bollerslev, Frederiksen and Nielsen (2006) extended the signature 
diagrams in order to count also for power and h-skip bipower variation. An alternative 
realized variance like high-low measure has been used by Brandt and Jones (2006), 
Alizadeh, Brandt and Diebold (2002), Brandt and Diebold (2006), Gallant, Hsu and 
Tauchen (1999), Yang and Zhang (2000), Schwert (1990), Parkinson (1980), and 
Garman and Klass(1980). Moreover, Christensen and Podolskij (2006) and Dobrev 
(2007) generalized the high-frequency data estimator in various ways, and discussed 
its link to the realized variance topic. Moreover, Zhou (1996) sought a method to 
correct the bias of the realized variance estimators by explicitly accounting for the 
covariance in the lagged squared return observations. Hansen and Lunde (2006) 
extended the work began by Zhou for the case of non-independent and identically-
distributed noise. Aït-Sahalia, Mykland and Zhang (2006) examined the necessary 
correction when the noise is independent and identically normally distributed, while 
Zhang, Mykland and Aït-Sahalia (2005) came with a consistent volatility estimator 
which considers all the data available, averaging realized variances through forming 
different sub-samples and correcting for the remaining bias. Aït-Sahalia, Mykland and 
Zhang (2005) extended further this work and proposed a method to account for some 
serial correlated errors. Barndorff-Nielsen, Hansen, Lunde and Shephard (2006) 
proposed kernel estimators as realized measures. 

In a traditional setting, prices are observed at discrete and unevenly spaced intervals, 
which reason determines one to look for different sampling schemes. An interval [0,1] 
is subdivided into sub-periods and the observation times are defined under the form 

of a set   with  where  is the 

length of each subinterval. Naturally, such length should decrease while the number of 
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observations in a day increases. Then the intraday variance over each subperiod may 
be defined as 

McAleer and Medeiros (2008) distinguish four sampling schemes, as follows: 

1. The calendar time sampling in which the intervals have equal length in calendar 

time, meaning that 
t

n, nt

1
1 , i. One example is sampling prices at each 5, 10 or 

15 minutes. A methodology for this type of sampling was offered by Wasserfallen 
and Zimmermann (1985), Andersen and Bollerslev (1997), and Dacorogna, 
Gencay, Muller and Pictet (2001), motivated by the fact that intraday data is 
irregularly spaced, with no fixed period spacing, so that for most of the data 
sampled observations must be built upon artificially. Hansen and Lunde (2006) 
found that the previous tick method (method which adds values of the last 
observations in the missing gaps) is a straightforward and competitive method to 
sample prices according to calendar time. More exactly, this method samples only 
the first observation of a five-minute interval. 

2. Another sampling method is the transaction time sampling in which prices are 
sampled with every transaction made.

3. A third alternative is the business time sampling in which sampling times are 

selected in such a way that .

4. Finally, there is the tick time sampling in which prices are recorded at each 
change.

To be mentioned that in the first sampling choice the observations are latent, while in 
the last three ones the sampled data are observed, each sampling choice producing 
effects in the estimated integration variance. 

3.3. Distribution of the realized variance 
Andersen, Bollerslev, Diebold and Labys (2003) found that the realized variance 
obtained from intraday data is a consistent estimator of the integrated variance when 
microstructure noise does not exist: 

The asymptotic distribution of the realized variance can be further derived from Jacod 
and Protter (1998) and Barndorff-Nielsen and Shephard (2002) as follows: 

In the above formulation, the  defines the integrated quarticity, which takes the 

form
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The integrated quarticity is unobserved and is likely to display large period-to-period 
variation. Therefore, a consistent estimator for the integrated quarticity should be used 
in relationship to the true realization in order to enable feasible inference. This 
integrated quarticity may be consistently estimated by the realized quarticity
(according to Barndorff-Nielsen and Shephard, 2002), defined as

and

In the papers of Meddahi (2002), Gonçalves and Meddahi (2005), Barndorff-Nielsen 
and Shephard (2005) and Nielsen and Frederiksen (2006) it has been studied the 
finite sample behavior of the limit theory given in (*). According to it, (*) is poorly 
seized but 

performs well.

4. Modeling with microstructure noise 

In what it follows we will discuss the effect of microstructure noise in estimating 
integrated variance. The market microstructure noise may arise from a variety of 
causes, like discreteness of the price [Harris (1990, 1991)] or properties of the trading 
mechanisms (Black (1976) and Amihud and Mendelson (1987)). Relevant literature 
may be found as well in O'Hara (1995), Madhavan (2000), Hasbrouck (2004) and 
Biais, Glosten and Spatt (2005). Zhang, Mykland and Aït-Sahalia (2005) assert that 
sampling over longer horizons merely diminishes the effect of microstructure rather 
than quantifying and correcting its effect for volatility estimation over shorter horizons. 

In what follows, the denotation by Zhang, Mykland and Aït-Sahalia (2005) will be kept, 
so we define  to be the logarithmic return price process, as observed at 

the sampling times.  represents the latent true, or efficient, return process that 

follows .  is the independent noise (microstructure noise) around the 

true return. It follows then that

where:  represents the efficient return. We can see that  is an 

autocorrelated process, and  will be a biased estimator of the true latent daily 

volatility. Since



 Non-Linear Volatility Modeling of Economic and Financial Time Series 

Romanian Journal of Economic Forecasting – 2/2011 127

it is straightforward to assert that, conditional on the efficient returns, 

such that  becomes as well a biased estimator of the integrated variance. 

When the microstructure noise is considered as a covariance stochastic process with 
zero mean and variance , Bandi and Russell (2005) found that 

as .

Furthermore, if the microstructure noise is a price independent process and an IID 
random variable with zero mean and variance , then according to 

Zhang, Mykland and Aït-Sahalia (2005), we have 

When sampling at high frequency, the intraday observation number becomes finite, 
while the observations become discrete. This leaves room for another bias due to 
discretization:

where “ ” sign represents the fact that, when multiplied by the proper number, 
convergence occurs in distribution. 

Furthermore, when the noise is an independent price process, and the microstructure 
noise is a stationary, strong, mixing stochastic process, with mixing coefficients 
decreasing at an exponential rate, and with zero mean and variance ,

if we additionally assume that  for some , then Zhang (2006) 

and Aït-Sahalia, Mykland and Zhang (2006) found that

where:

This means that, when  becomes large, the realized variance  will 

diverge linearly to infinity. Bandi and Russell (2005) and Zhang, Mykland and Aït-
Sahalia (2005) showed that the realized variance estimates consistently the 
microstructure noise variance such that 
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Andersen, Bollerslev, Diebold and Labys (2000, 2001, 2003) offered a possible 
solution called “sparse sampling” to this microstructure bias, which consists of return 
sampling at randomly chosen lower frequencies, like 5 or 15 minute sampling, than 
tick by tick sampling. However, in the opinion of Zhang, Mykland and Aït-Sahalia 
(2005), sparse sampling is not very efficient. Their argument included the following: if 

a  grid is defined, with  equal-length samples, then  is a 

subgrid of . Defining

then by using the results of Barndorff-Nielsen and Shephard (2002), Mykland and 
Zhang (2006), Zhang, Mykland and Aït-Sahalia (2005), Zhang (2006) and Aït-Sahalia 
(2006), the sparsed realized variance takes the form 

5. The conditional return variation and the concept 

of realized volatility 

The following section is dedicated to the natural liaison between quadratic variation 
and the integrated variance, in order to cover some practical aspects as regards the 
estimations of the realized volatility and of the variance of conditional return. 
Assuming an invariable drift and volatility coefficients, both conditional and 
unconditional variance in returns will equal the quadratic variation in the log price. On 
the contrary, if assuming volatility as a stochastic process, then precise distinction 
between conditional variance (which stands for the expected size of the innovations of 
the squared returns over a specific interval) and the quadratic variation over a specific 
time horizon is needed. Therefore, the difference may be expressed as an expectation 
against future realizations of the volatility of stock returns. Theoretically, the realized 
volatility would express only the actual realizations, and not their previous 
expectations. However, the realized volatility estimates are efficient in capturing the 
conditional return variation as one may build up accurate forecasts/conditional 
expectations of return volatility out of a financial or economic time series formed from 
past realized volatility.

The above assertions may be even strengthened under a simplified setting. If the 
instant return is a continuous-time process and the return, average and volatility series 
are low or not correlated processes, then the conditional expectation of the return 
should be normally distributed, conditional on the cumulative drift and on the quadratic 
variation. Therefore, the distribution of the return series is mixed Gaussian with the 
mixture ruled out by the integrated variance realizations, along with their integrated 
mean. Realization jumps from the integrated variation process make the outliers of the 
returns become probable while the persistence in the integrated variance process 
may determine volatility clustering. Furthermore, over short horizons, when the 



 Non-Linear Volatility Modeling of Economic and Financial Time Series 

Romanian Journal of Economic Forecasting – 2/2011 129

conditional mean is very low as compared to the cumulative absolute return 
innovations, the integrated variance process may be intrinsically linked to the 
conditional variance.

Because the realized variance is roughly unbiased for the related unobserved 
quadratic variation, the realized volatility estimate comes as the natural point of 
reference against which we estimate the volatility forecasts accuracy. There may be 
also tests of goodness-of-fit undertaken on the residuals resulted from subtracting the 
forecast from the realized volatility measures.

The realized volatility topic is also related to the return variation estimated over a 
discrete time period rather than with the spot (instant) volatility. The distinction 
appears due to the differentiation between realized volatility concept and a whole 
range of literature written in the search of spot volatility estimation from discrete 
observations, mainly in a setting with a constant diffusion coefficient. Although 
theoretically the measurement of realized volatility can be adapted easily to spot 
volatility estimation, in practice this is not feasible as frequent sampling over very 
small intervals may amplify the effects of microstructure noise. 

6. Modeling and forecasting realized volatility 

A well-known fact in the literature is that when GARCH and SV
5
 models are employed, 

the standardized returns do not exhibit a Gaussian distribution. Instead, the 
standardized returns present an excess kurtosis, thing that reasons for the 
employment of heavy-tailed distributions. Andersen, Bollerslev, Diebold and Labys 
(2000, 2001, 2003) proved that when modeling has been made with the employment 
of realized variance measures, the distribution of standardized exchange rates 
approaches the properties of a typical Gaussian. A similar application with stock 
returns run by Andersen, Bollerslev, Diebold and Labys (2001) arrived to similar 
conclusions.

The log-realized variance is significantly persistent, but stationary, with long memory 
properties, traditionally expressed as an ARFIMA(p,d,q) process. Various models 
have been proposed to catch the properties of such time series. One of them is the 
Multiplicative Error Model (MEM) proposed by Engle and Gallo (2006) that is 
consistent and asymptotically normal under a wide range of specifications for the error 
density function. The MEM model is best suited to model the conditional behavior of 
positively valued variables choosing a convenient GARCH-type structure when 
modeling variance and persistence.  Another model is the HEAVY model [Shephard 
and Sheppard (2009)], a high frequency-based volatility model of daily asset return 
volatility based on measures constructed from high frequency data. The authors 
proved that such models perform more robust to level breaks in the volatility than 
conventional GARCH models, adjusting to the new level much faster. 
Supplementarily, although such model shows mean reversion, it exhibits as well 
momentum, a feature that misses from classical models. 

                                                          
5
Stochastic volatility. 
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Another model that uses realized measures is the Heterogeneous AutoRegressive 
Realized Volatility (HAR-RV) model proposed by Corsi, Zumbach, Muller and 
Dacorogna (2001) and Corsi (2003), model that has at its ground the Heterogeneous 
ARCH (HARCH) model proposed by Müller, Dacorogna, Davé, Olsen, Puctet and von 
Weizsäcker (1997). The HAR-RV model represents an additive cascade of different 
volatility components produced by actions of the participants in the market that 
produces remarkably good out-of-sample forecasting performance. The HAR-RV 
model is built up in such a way that the additive volatility cascade leads to an AR-type 
model in the realized volatility, considering volatilities realized over different sampling 
sizes.  

Subsequently, McAleer and Medeiros (2006) offered a multiple regime smooth 
transition generalization of the HAR-RV model (called Multiple Regime Smooth 
Transition Heterogeneous Autoregressive HARST), by coming with a flexible model 
able to capture the non-linearities and long-range dependence in time series 
dynamics. The model has been designed to describe concurrently long memory and 
size and sign asymmetries.

In volatility forecasting topic, sources of long memory have been intensively searched, 
because shorter memory of a model, better forecasting performances may be 
produced. For example, Hyung, Poon and Granger (2005) revealed that numerous 
nonlinear short memory models, especially those which present infrequent breaks, 
may generate long memory patterns. Some of these models are the regime switching 
model of Hamilton and Susmel (1994), the volatility component model of Engle and 
Lee (1999), the model proposed by Diebold and Inoue (2001), the break model 
developed by Granger and Hyung (2004), and the multiple regime-switching model of 
Medeiros and Veiga (2004). The latter one is developed to describe size and sign 
asymmetries in financial volatility as well as intermittent dynamics and excess 
kurtosis. Hilledebrand (2005) and Hilledebrand and Medeiros (2006) revealed the 
statistical consequences of neglecting structural breaks and regime switches in 
autoregressive and GARCH models, proposing two solutions to remedy the problem: 
the identification of those regimes with constant unconditional volatility that use a 
change point detector and then estimate a separate GARCH model on each of the 
separate resulting segments, and the estimation of a multiple-regime GARCH model, 
like that of FCGARCH type (Flexible Coefficient GARCH).  

Scharth and Medeiros (2006) came with a new model built up on regression trees that 
described the realized volatility dynamics for some DJIA stocks. They presented 
empirical evidence that additive price changes convey meaningful information as 
regards multiple regimes in the realized volatility of stocks, whereas large rises (falls) 
in prices are highly dependent on persistent regimes of low (high) variance in stocks. 
Therefore, past cumulated daily returns incorporated as a source of the regimes’ 
switches accounts for high empirical values of long memory parameter estimates. The 
nonlinear model has been found to be superior to the other long memory models, 
ARFIMA and HAR-RV. 

In all previously mentioned references, volatility has been assumed to refer only to 
short memory between breaks in each component of volatility and within each regime. 
A significant improvement of this approach came from Martens, van Dijk and Pooter 
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(2004) who considered a model that combined the long memory properties with 
nonlinearity, particularly relevant in modeling asymmetries and leverage effects. The 
model they proposed is a nonlinear model for realized volatility which accommodated 
level shifts, day-of-the-week effects, leverage effects and volatility level effects. Deo, 
Hurvich and Lu (2006) proposed a long-memory stochastic volatility model (LMSV) 
which is found as a very good competitor to the method that predicts realized variance 
by using a long memory stochastic volatility model applied to high frequency return 
data while accounting for significant gradually varying intra-day seasonality in 
volatility. Koopman, Jungbacker and Hol (2005) established a model which joined 
unobserved elements and long-memory, while Hillebrand and Medeiros (2008) 
documented a model that joined long memory with different features of nonlinearity. 

Despite such a rich literature on the emerging field of realized volatility, open 
questions regard the sources of long memory characteristic in the realized volatility 
and the extension of benefits in terms of volatility predictability from combining long-
memory with nonlinear models (Ohanissian, Russell and Tsay  (2004)). 

Treating the same topic of long-memory, Lieberman and Philips (2008) offered some 
analytical explanations on the reason according to which realized volatility series 
typically display long range dependence with a memory parameter (d) of around 0.4. 
They found that long-memory properties are an effect of the accumulation of realized 
variance and offered some solutions to refine the statistical inference as regards the 
parameter d in ARFIMA(p,d,q) models. 

Aït-Sahalia and Mancini (2006) compared the out-of-sample relative capacity of 
forecasting of realized variance in different contexts. Ghysels and Sinko (2006) 
assessed the extent to which the correction for microstructure noise improved 
forecasting future volatility using Mixed Data Sampling (MIDAS) and found that the 
conditional optimal sampling works reasonably well in practice. They also found that 
within the class of quadratic variation measures, the subsampling and averaging 
approach (Zhang, Mykland and Aït-Sahalia (2005)) represents the class of estimators 
that best predicts volatility at five minute sampling schemes. Furthermore, Corradi, 
Distaso and Swanson (2006) estimated and forecasted conditional predictive density 
and confidence intervals for integrated volatility by newly proposed nonparametric 
kernel estimators, built upon various realized volatility measures constructed using ex
post variation of asset prices. Corsi, Kretschmer, Mittnik and Pigorsch (2008) showed 
that the residuals of the commonly used time-series models for realized volatility 
exhibited non-Gaussianity and volatility clustering, proposing extensions to explicitly 
account for these properties and assess their relevance when modeling realized 
volatility. Moreover, they demonstrated that allowing for time-varying volatility of 
realized volatility leads to significant improvement of model fit and of the predictive 
performance as well, while the distributional assumption for residuals proved to be 
crucial in density forecasting. 

Another important topic in the context of realized volatility is that, regardless of the 
microstructure noise presence, the realized volatility is an estimated quantity rather 
than a true, daily value of volatility or of the integrated variance, while integrated 
quarticity may be replaced by realized quarticity. This fact opens the perspective of 
employing generated regressors and generated variables in forecasting exercises, 
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associated with critical questions on the efficient estimation and invalid inferences that 
may occur when biased (asymptotic) standard errors are used [Pagan (1984, 1986), 
McKenzie and McAleer, (1997)].

Andersen, Bollerslev and Meddahi (2004, 2005) built up a general model-free 
adjustment method aimed at estimating the unbiased volatility loss functions starting 
from practically feasible realized volatility benchmarks. According to them, an efficient 
measurement error accounting in the evaluations of volatility forecasts may lead to 
markedly higher estimates for the true degree of return-volatility predictability. Corradi 
and Distaso (2006) proposed a procedure to test for the correct specification of the 
functional form of the volatility process within the class of eigen function stochastic 
volatility models. The procedure starts from the comparison of the moments of 
realized volatility measures with the corresponding ones of integrated volatility implied 
by the model under the null hypothesis. They first provided primitive conditions as 
regards the measurement error associated with the realized measure, which would 
allow to construct asymptotically valid specification tests. Then, they established those 
regularity conditions under which the realized measures (realized volatility, bipower 
variation, and modified subsampled realized volatility) satisfy the given primitive 
assumptions.

7. Multivariate empirical studies 

One of the most cited papers which discussed the topic of realized variance in 
applications with multivariate models is de Pooter, Martens and van Dijk (2008). This 
paper investigates the merits of high-frequency intraday data when forming mean-
variance efficient stock portfolios with daily rebalancing from the individual stock 
components of the S&P100 index. They focused on the problem of establishing the 
optimal sampling frequency as revealed by the performance of these portfolios. 
Surprisingly, the authors found that the optimal frequency is not the highest frequency 
one, but it ranges between 30 and 65 minutes, significantly lower than the popular 
five-minute one, which is typically motivated by the aim of maintaining a balance 
between the variance and bias in covariance matrix estimates due to market 
microstructure effects like non-synchronous trading and bid-ask bounce. Another 
important finding is that bias-correction procedures, based on combining covariance 
matrix estimates with low-frequency and high-frequency, and on the summing of leads 
and lags, do not significantly influence the optimal sampling frequency or the portfolio 
performance. This is also robust to the presence of transaction costs and to the 
portfolio rebalancing frequency.

Another paper that discusses in multivariate context the functioning of realized 
variance modeling is Bauer and Vorkink (2006) who propose a new matrix logarithm 
model of the realized covariance of stock returns, by employing latent factors as 
functions of both lagged volatility and returns. The model proves advantageous as it is 
parsimonious, does not require imposing parametric restrictions and yields a positive 
definite covariance matrix. The model is empirically tested with a covariance matrix of 
size-sorted stock returns and two factors are isolated as satisfactory to capture most 
of the dynamics. A new method to track down an index using the model of the realized 
volatility covariance matrix proposed is also introduced. 
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8. Empirical exercise 

In what follows we consider an empirical exercise to prove the advantages of 
considering modeling with intraday volatility measures instead of using only daily data. 
Therefore, we shall consider the AIG stock forming a 3436 long time series sampled 
daily over January 4, 1995 – September 30, 2008 period. We shall use as measures 
of intraday volatility a 3436 long time series with daily realized kernels that describe 
the intraday variance of each day. We shall employ an in sample procedure, trying to 
maximize the loglikelihod functions over the whole sample of the following two 
models:

GARCH(1,1) model (simple model):  ,  and 

EGARCH-X(1,1) model (realized model):  , 

where: r represents the returns,   the variance, x the realized measures (kernels) 

and  the studentized returns. 

The loglikelihood functions to be maximized are: 

For the GARCH(1,1) model: 

For the EGARCH-X(1,1) model: 

The parameters obtained and the maximum loglikelihood functions are: 

Model  Parameters Loglikelihood function 

GARCH(1,1) -0,0018 0,0209 0,1103 0,8937 - - - -6215,1406 

EGARCH-X(1,1) -0,0377 0,0291 - 0,7145 0,3006 -0,0468 0,0151 -6153,3633 

As we can see, the loglikelihood function improves when the intraday volatility 
measures are used. Similarly, if we measure the errors of each model by using the 
RMSE (root mean squared error) and the MAPE (mean absolute percentage error) 
error measures, we will obtain: 

Model Errors Loglikelihood function 

 RMSE MAPE  

GARCH(1,1) 107,3708 79,6350 -6215,1406 

EGARCH-X(1,1) 109,8659 81,6018 -6153,3633 

Both results (loglikelihood functions and error measurements) indicate that the 
realized model (EGARCH-X) improves volatility estimation as compared to a simple 
GARCH(1,1) model. 
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9. Conclusions 

This paper provides a review of the most important developments that occurred in the 
literature on the topic of volatility forecasting using high frequency data, searching to 
investigate the existing gaps in what concerns modeling and forecasting realized 
volatility. It realized an extensive review of the literature on relevant aspects in 
modeling volatility topic, highlighting the problems posed by the properties of financial 
time series (like the long memory pattern of volatility or the latent character of the 
conditional variance) and the way the literature attempted to overcome them, as well 
the drawbacks of the methods proposed for this purpose. In this context, it has been 
underlined the step forward made in modeling activity when high frequency data was 
employed, this type of data allowing the experimentation of more straightforward 
methods to estimate volatility. It was mentioned that the realized volatility models 
allowed solving many of the drawbacks of the traditional non-realized models. 
Disadvantages of sampling at higher frequency were discussed as well, among which 
the most relevant is the microstructure noise that may arise from bid-ask bounce, 
asynchronous trading, price discreteness or infrequent trading, when sampling is done 
at the highest frequency as possible. It was concluded that the literature on modeling 
volatility has concentrated on obtaining highly restrictive and complex parametric 
versions of GARCH models or of stochastic volatility models, which soon found their 
limitations in terms of predictability, especially at higher frequency distributions of 
returns.

In this context, the modeling activity has aroused concern about improving the 
modeling process in two regards: to offer a rigorous methodology that would fully 
exploit the information contained in the available high frequency data, and to offer a 
simpler, more straightforward and easier implementation of the methods in the highly-
dimensional environments. 

For the purpose of offering a more comprehensive review of the models which best 
respond to the two above-mentioned desiderata of the literature, realized models were 
introduced, first in a univariate setting; so a simple discrete time model was described, 
revealing a central finding in the literature, that the summation of the squared intraday 
returns provided a better estimation of latent daily return variance than the sum of the 
squared daily returns. Then, a continuous time specification was employed, showing 
the advantages and disadvantages of various sampling schemes that might be used. 
Thus, it was asserted that although the realized volatility approximated better the 
quadratic variation as the sampling frequency increased, the continuous price was not 
always available even for the most liquid assets. Moreover, a large panel of 
microstructure noise effects induces spurious autocorrelations in the high frequency 
sampled return series, which may increase the estimates of the realized variance and 
generate a type of bias-variance trade-off. Various solutions were described in order 
to overcome such difficulties, all of them involving different sampling schemes. 

Thus, the microstructure noise arising from discreteness of price or from properties of 
the trading mechanisms topic was further discussed; since the microstructure noise 
was found as a serious problem in modeling in continuous time setting, a separate 
section has been added. For this purpose, both independent and dependent noise 
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processes were considered. Solutions to the consistency problems were also 
mentioned.

The paper ends with four sections dedicated solely to realized volatility topic. They 
present the concept of conditional return variation and its natural liaison to the 
integrated variance, showing how the realized modeling succeeded to enclose it in its 
formulation. After presenting the advantages of this type of modeling, an extensive 
review of the literature that covered this topic was undertaken, presenting the relevant 
points of view each proposed model tried to address to. Critical issues on modeling 
and forecasting realized volatility were considered also in multivariate empirical 
contexts, and some papers that approached volatility modeling with realized methods 
in multivariate settings being reviewed. Finally, the paper closed with a short empirical 
exercise that underlined the gain in accuracy when realized measures were 
employed.

The subject of volatility forecasting proves to be of high relevance to various 
theoretical or applied contexts, like modern pricing, investment or risk management 
fields, market timing decisions, portfolio selection, in point forecasting, interval 
forecasting, probability forecasting including sign forecasting and density forecasting. 
Given the large interest in such a large panel of possible applications, it is obvious that 
we need to correctly formulate the variance forecasting models, so that they would 
prove useful eiher applied to investment or risk management field, security valuation 
and pricing, or to monetary policy making. That is why, in this context, the step 
towards using higher frequency data enables us to provide better modeling to the 
benefit of all these related activities. 
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