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Abstract
We investigate the existence of nonlinear patterns in the dynamics of the main stock 
index returns in Romania. We use daily closing data of the BET stock index series 
from 2004 to early 2010. Based on several tests for nonlinearity we reject the null 
hypothesis of linearity. We use several types of threshold models and compare their 
fitness and forecasting performance with basic AR models. We found that the LSTAR 
and SETAR models fit best the data; however, they cannot outperform the simpler AR 
models in forecasting. These results suggest that although there are nonlinear 
features in data, the threshold models are not complex enough to reveal the data 
complexity. 
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1. Introduction 
Many empirical studies have detected significant nonlinearities in the stock prices 
Hsieh (1991), Abhyankar, Copeland and Wong (1995), Ryden, Teräsvirta and Asbrink 
(1998). Scheinkman and LeBaron (1989) proved that the daily yields have a strong 
correlation between consecutive days, but they did not find enough evidence for the 
presence of chaos in the stock yields. Evidence indicates that the yields are not 
                                                          
1 This research is part of the IDEI Program, Exploratory Research Projects ID_1046, “Nonlinear 

Models of Forecasting the Economic Development”, Institute for Economic Forecasting, 
Romanian Academy, 2008 competition. 

* National Institute for Economic Research, Romanian Academy; Email: 
marius.acatrinei@gmail.com. 

** Institute for Economic Forecasting, Romanian Academy; Email: caraiani@ipe.ro. 

4.



 Modeling and Forecasting the Dynamics in Romanian 

Romanian Journal of Economic Forecasting – 2/2011 43

independent and identically distributed (i.i.d.), the cause being not a regime switching 
or a chaotic dynamic but rather the conditional heteroscketasticity (Hsieh, 1991).

Economic theory suggests a potential number of sources for the presence of 
nonlinearities in the stock prices: the diversity of the market participants’ views (Brock 
and Hommes, 1998), heterogeneity of the investors objectives given the different 
views on risk propensity or multiple investment horizons or maybe due to the irrational 
behavior of the investors and of the mimetic behavior of the investors who follow the 
general market trend (Lux, 1995). 

The financial econometrics of the time series has initially modeled the stock prices as 
random walk processes implying that that the price changes were i.i.d. Because the 
assumption was too restrictive, it did not allow the researchers to analyze the financial 
time series. By relaxing this assumption, it allowed the introduction of nonlinear 
models in the study of financial time series.

Financial time series have certain peculiar characteristics such as: non-normal 
distribution of the return (yield), fat tails phenomenon due to the high kurtosis, short-
term correlation of return defined as log difference of the daily 

prices ),ln(P)ln(PR 1ttt long-term autocorrelation of the volatility, mean-

reversion in the securities prices implying a positive autocorrelation on short term and 
negative autocorrelation on long term (Poterba and Summers, 1988).

Our paper tries to detect if the significant stock market index of Bucharest Stock 
Exchange (BVB), such as BET stock index as well as its return, manifest 
nonlinearities  described in the above literature review, by applying a series of 
nonlinearity tests. Since the nature of financial data suggests that nonlinear models 
are more suitable for describing returns of the financial instruments, we will test 
several nonlinear models with discrete and smooth transitions in order to detect 
switching regime behavior of returns.

The paper is organized as follows. We detail the data used in the second section. In 
the third section we test for the existence of nonlinear features in both log and log-
return of data. The estimation of proposed threshold models is done in the fourth 
section. We compare the quality of the fit and the forecasting capability relative to 
benchmark AR models. We conclude in the fifth section where we also derive some 
possible explanations for the results as well as future developments. 

2. Methodology 

We will proceed in two steps. In the first step we test for the existence of nonlinearities 
using two of the most common tests for detecting nonlinearities, i.e. Keenan and Tsay 
tests. In the second step, depending on whether there are or not nonlinearities, we will 
use nonlinear models, based on the simple AR model, to estimate and forecast the 
behavior of BET index returns.

The financial time series are publicly available at the Bucharest Stock Exchange 
(B.V.B.), website www.bvb.ro. For our analysis we have selected the BET index, 
which is the reference index for the Bucharest Stock Exchange (BVB) market. The 
BET index is a price index weighted with the free float of the most liquid 10 companies 
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listed on the regulated BVB market and represents the benchmark for the Romanian 
capital market.  

The data selected comprise daily closing prices of the BET index from January 2004 
until March 2010. The reason for selecting 2004 as the starting time was that the 
Romanian capital market had experienced in 2004 a sharp increase in returns for all 
BVB indexes, for example the annual return of BET index was 101%, the fixed income 
instruments underwent a spectacular increase, and the reduction in the trading fees 
and the investment opportunities attracted many physical persons, which constituted 
almost 50% of the investors, to trade on BVB. Important events such as the status of 
functional market economy given by European Commission and the issuance of Law 
no. 297/2004 on capital market, consolidated the capital market and further attracted 
foreign investors.

The four main types of non-iid behavior are: 1) linear dependence; 2) nonstationarity; 
3) chaos; 4) nonlinear stochastic processes. Because we cannot argue that the 
behavior of the stock index values remain unchanged for the time interval of 
approximately six years, we will apply unit root test for detecting nonstationarity of the 
financial time series analyzed. The unit root test ADF and Phillips-Perron indicate the 
existence of a unit root for the BET stock indexes. The BET series is made stationary 
by using the first difference, that is the returns of BET stock index. Also, the Jacques-
Bera test of BET index daily closing prices and its returns indicates that the series 
don't follow a normal distribution.

Figure 1 

Daily close and returns for BET and BET-C indexes 
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Source: Own computations and BVB. 

Since the empirical studies on financial time series indicate that the returns of the 
stock exchange indexes may be nonlinear, we apply Keenan and Tsay tests for 
detecting nonlinearity. The graphical representation of the BET returns from Figure 1 
strengthens our conviction of nonlinearity of the returns, given the occurrence of the 
classic phenomenon of return clustering around mean which may be attributed to 
diverse economic factors (Lux, 1995). Also the figure suggests that large returns 
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occur more often than expected, the kurtosis of the returns being fatter than the tails 
of the normal distribution and that large stock market returns are often negative (due 
to negative skewness) 

3. Testing for the Existence of Nonlinearities 

Testing for the existence of nonlinearities is an essential step in the nonlinear 
modeling of a time series. If there is no evidence of nonlinear dynamics, the nonlinear 
approach is hardly justifiable and rather classical linear methods should be used. 
There are several approaches in the literature, but we present and apply two of the 
most widely used tests, namely Keenan test and Tsay test. The presentation follows 
the perspective from Cryer and Chan (2008). 

Keenan test (1985) is based on a second-order Volterra type expansion. The Volterra 
expansion, which is similar in concept to the Taylor expansion, is used for nonlinear 
modeling and its specific feature is its ability to capture memory effects. The Keenan 
test can be written as: 

...,
,,,

ktjtit
kji

ijkjtit
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ijit
i
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Here ,t t are a sequence of i.i.d. random variables with mean zero while 

y1,…,yn are the observations. The process tY is linear if the double sum of the right-

hand side of the equation disappears. Thus, testing the nonlinearity of a series yt

consists practically in testing whether the double sum is zero or not. 

Alternatively, as Cryer and Chan (2008) pointed out, Keenan test can also be 
heuristically derived as follows: 
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where te are independent and normally distributed with zero mean and finite 

variance. If the regression coefficient 0  then the exponential term becomes 1 and 

it can be absorbed in the intercept so that the previous model becomes an 
autoregressive model AR (m). If the regression coefficient is different from zero, 

then the previous model is nonlinear. Using the expansion exp( ) 1x x , which 
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The literature has underlined the potential limits of the Keenan test: although it is 
powerful in detecting nonlinearity in the form of the square of the approximating linear 
conditional mean function, the strength of the test may be sometimes low, as Keenan 
has showed (Keenan, 1985). 

The test statistic 
2

2 22

RSS
)mn(F̂  is approximately distributed as an F-distribution 

with degrees of freedom 1 and n-2m-2. 

An enhancement of the Keenan test was provided by Tsay (1986). Again, we follow 
the description from Cryer and Chan (2008). The Tsay test augments Keenan’s 
approach by replacing the term
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Using the approximation we can observe that the nonlinear model is approximately a 
quadratic AR model but the coefficients of the quadratic terms are unconstrained. The 
Tsay test considers the following quadratic regression model: 
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and tests whether all m(m+1)/2 coefficients i,j =0 .

To perform tests for nonlinearity we have to specify m, the autoregressive order. 
Under the null hypothesis that the process is linear, the order can be specified by 
using the information criterion, for example AIC.

Table 1 

Keenan test for the daily time series dlog(BET) (01.2004-03.2010) 

Number of lags F-test p-value 

1 9.09 0.0026 

2 13.10 0.0003 

3 6.13 0.0133 

4 6.29 0.0122 

5 6.76 0.0093 
Source: Own computations. 
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Below, we apply the Keenan and Tsay tests to the financial series BET presented in 
the first section. 

Table 2

Tsay test for the daily time series dlog(BET) (01.2004-03.2010) 

Number of lags F-test p-value 

1 7.86 0.0050 

2 11.64 1.523e-07 

3 9.27 5.255e-10 

4 5.81 1.224e-08 

5 5.27 2.037e-10 
Source: Own computations. 

The results for the BET series are consistent and strong in the favor of nonlinearities 
in the time series over the chosen sample. Both Keenan and Tsay tests for lags 1 to 5 
strongly reject the null hypothesis of linearity (we also found the same results even for 
a larger number of lags). These results allow us to continue our investigation on 
nonlinear features of the time series from Romanian financial market by using several 
classes of nonlinear models. 

4. Modeling the BET series using Threshold AR 

Models

4.1. Some theory 
The additive nonlinear autoregressive model (AAR, hereafter) 

Intuitively, the additive model is just a generalization of the linear regression model. As 
Hastie and Tibshirani (1990) point out, the additive models retain one important 
feature of linear models, they are additive in the predictor effects. At the same time, as 
they underline, the elements must not be either univariate or smooth, as the 
component functions can have even more than two dimensions. 

An additive model, Hastie and Tibshirani (1990), is defined by

p

j
jjst xfx

1

)(

,

where errors are independent of the Xjs, 
2)(,0)( VarE and fjs are univariate 

functions, one for each predictor.

The Generalized Additive Models (GAM), see Hastie and Tibshirani (1986), extend 
the GLM (Generalized Linear Model) approach by replacing the linear form with an 
additive form. Using scatterplot smoothers allow us to model the terms 
nonparametrically and let the data suggest the nonlinearities.

The Additive Nonlinear Autoregressive Model (AAR) is a nonparametric additive 
autoregressive model (GAM) of the form 
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where s are steps and si are nonparametric univariate functions of lagged time series 
values represented by penalized cubic regression splines. The time delay is d and m
is the embedding dimension, while µ is a constant. 

Self-Exciting Threshold AR models (SETAR, hereafter)
Different time series models have been proposed for describing the different regimes 
generated by a stochastic process. Tong (1978) and Tong and Lim (1980) proposed a 
threshold autoregressive model (TAR) in which the regime was determined by the 
value of an observable variable relative to a threshold value.

Our application is based upon first-order SETAR model; see Cryer and Chan (2008) 
for a detailed presentation. The model is described below: 

1,0 1,1 t 1 1 t t-1

t

2,0 2,1 t 1 2 t t-1

µ  y e  if y
y

µ  y e  if y

where: are the autoregressive parameters,  are noise standard deviations, is

the threshold parameter and {et} is a sequence of iid random variables with zero mean 
and unit variance.

Therefore, if the lag 1 value of yt is not greater than the threshold, then the conditional 
distribution of yt is similar to the first AR(1) process and we say that we are in the 
lower regime, but when the lag 1 value of yt is greater than the threshold, then the 
second AR(1) model is operational and we are in the upper regime. Thus the process 
switches between two linear models depending on the position of the lag 1 value. 
Since the error variance may be different in the regimes, the SETAR model can 
account for conditional heteroscedasticity in the data.

Smooth Threshold AR models (STAR, hereafter) 
The transition between one regime to another may not be discrete, as it is in the 
SETAR model, but smooth. In this respect the switching regression models may be 
generalized in order to take into account a smoother transition, Terasvirta (1998).

Regarding the financial time series it is more realistic to suppose a continuum of 
states between the two regimes, Terasvirta (1998). He also pointed to the fact the 
investors don’t take the same decisions at the same moments, but they rather 
respond with delays to significant news. The delay may be attributed to interpretation 
of the news, rebalancing the portfolio and also to their different investment strategies 
and horizons. 

The border between the two regimes in the SETAR model is given by a specific value 

of the threshold variable yt 1. If the indicator function Ia y 1t
is replaced by a 

continuous monotonic function ),,G(y 1t of yt-1 which changes monotonically from 

0 to 1 as yt 1 increases, see Franses and van Dijk (2000) or Terasvirta (1994). Then, 
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the resulting model is known as Smooth Transition AR model (STAR). The STAR 

models have only one function ),,G(y 1t of yt-1 that changes. 

Logistic STAR Models (LSTAR, hereafter) 
If the continuous function G is a logistic function, then the resulting model is called a 
Logistic Smooth Transition AR model (LSTAR). Our presentation follows Franses and 
Van Dijk (2000). The transition logistic function is: 

])[yexp(1

1
),,G(y

1-t

1t

where location parameter  determines where the transition occurs and it is 

interpreted as the threshold between the two regimes corresponding to 

),,G(y 1t =0 and ),,G(y 1t =1 as the logistic function changes from 0 to 1. The 

parameter is the slope indicator and it determines the smoothness of the change in 

the value of the logistic function, namely the speed of the transition from one regime to 
another. If becomes larger, then the transition from 0 to 1 occurs almost 

immediately at yt 1 = and, consequently, the logistic function ),,G(y 1t

approaches the indicator function Ia y 1t
, and the SETAR model may be 

approximated by a LSTAR model. A two-regime SETAR model is a special case of the 
LSTAR model when the slope parameter  (Terasvirta, 2006). 

4.2. Estimation results 
In order to assess the performance of the used nonlinear models described above, we 
use simple linear AR models as a benchmark. 

4.2.1. Modeling BET series using SETAR and LSTAR models
SETAR models for BET series 
The choice of the number of regimes for SETAR model was set to 2 regimes, after 
carefully investigating the data. The maximum autoregressive order for the low regime 
was set at 2, while the maximum autoregressive order for the higher regime was also 
set at 2. We searched for 1084 possible threshold values within regimes with a 
sufficient (15%) number of observations and then we searched on 4336 combinations 
of thresholds (1084), with a threshold delay 1, for a maximum autoregressive order for 
the low regime 2, and a maximum autoregressive order for the high regime also set at 
2. The number of regimes for SETAR model may be explained by fact that the index 
was not traded as such and there were no derivatives on the BET index at that 
moment. If the data allow, then the number of regimes changes increases and it is 
possible to observe more regimes. 

 The results of the grid search for 1 threshold are presented below in Table 3 after 
performing a grid search.
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Table 3 
Grid search for SETAR model (BET series) 

Nr.crt Threshold delay Low regime High regime Threshold pooled-AIC 

1. 0 2 2 0.01333893 8082.412 

2. 0 2 2 0.01335794 8081.891 

3. 0 2 2 0.01328153 8081.456 

4. 0 2 2 0.01318780 8080.338 

5. 0 1 1 0.01333893 8079.846 

6. 0 2 2 0.01314196 8079.185 

7. 0 1 2 0.01333893 8079.011 

8. 0 1 1 0.01335794 8078.972 

9. 0 1 1 0.01328153 8078.884 

10. 0 2 2 0.01355924 8078.508 
Source: Own computations. 

The best SETAR model (2 regimes) for BET series is described below in the following 
table.

Table 4 

The best SETAR model (BET series) 

Coefficients

Low regime 

phiL.1 phiL.2 Const L 

0.036406307 0.116461567 -0.000842535 

   

High regime 

phiH.1 phiH.2 Const H 

0.029496587 -0.185539531 0.004717268 
Note: Where phiL.1 and phiL.2 are the lower order coefficients for lower regime, constL is the 
constant for the lower regime. phiH.1 and phiH.2 are the autoregressive coefficients for the 
higher regime with constH the constant. 
Source: Own computations. 

No delay was found in the threshold function, following the grid search. The threshold 
function is given below: 

 Variable: Z(t) = + (1) X(t)+ (0)X(t-1) 

 Value: 0.0092 

We found the threshold value to be positive, and it was estimated at 0.0092, at 
roughly 1% return. This implies that agents’ behavior changes any time the index 
moves below or above 1% return. The fact that the no delay was found may be 
explained through the investors’ ability to quickly react to the changing market 
conditions.

The estimated lower regime corresponds to the increasing phase of returns and the 
upper regime corresponds to the decreasing phase of the returns. When the returns 
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are low, investors are interested to enter the market in order to obtain profit. We see 
that both coefficients in the lower regime are positive, thus being associated with a 
robust growth in returns. There is also a significant number of observations in the 
lower regime (71.71%), while the remaining number in the upper regime (28.29%) is 
lower than the number in the lower regime, probably speculative or long-term 
investors. As more and more investors are entering the lower regime driven by the 
opportunities available on the capital market, the market is cleared and left with fewer 
attractive investment opportunities. As we enter the upper regime the investors are 
more vulnerable to higher risks and close their positions. The coefficients in the higher 
regime indicate decreasing returns for investors. The switching regime indicates that 
the investors are motivated by quick returns and unwilling to bear higher risks.

LSTAR models for BET series 

After performing a grid search for starting values with the following starting values 
fixed, respectively gamma = 40, threshold = 0.0214; SSE = 0.5554, and the 
optimization algorithm converged, then the optimized values fixed for regime 2 are 
gamma = 40 and threshold is 0.02435706. The results are presented in Table 5. 

Table 5 

Grid search for LSTAR model (BET series) 

Nr.crt
Threshold

delay
Low regime High regime pooled-AIC 

1. 0 2 2 -12443.50 

2. 0 1 2 -12412.13 

3. 0 1 1 -12400.20 

4. 0 2 1 -12398.33 

5. 1 2 1 -12396.00 

6. 1 2 2 -12394.14 

7. 1 1 1 -12390.70 

8. 1 1 2 -12389.62 

9. 2 1 1 -12377.11 

10. 2 2 2 -12375.93 
Source: Own computations. 

Following the results presented in Table 5, the best LSTAR model, according to AIC 
criterion is the model in position 1. The model is described in Table 6. 

Table 6 

The best LSTAR model (BET series) 

Coefficients

Low regime 

phi 1.0 phi 1.1 phi 1.2 

-0.02821553 -0.42131971 0.26514173 

High regime 

phi 2.0 phi 2.1 phi 2.2 

0.1019793 -0.4699942 -0.7897399 
Source: Own computations. 
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The estimation of the smoothing parameter was found at a high value, namely that 
gamma is equal to 40. Such a large value for gamma implies a quick speed of 
transition between the two regimes.

Again, as in the SETAR case, no delay was found in the threshold function. The 
threshold function is presented below.

Variable: Z(t) = + (1) X(t) + (0) X(t-1) 

Value: 0.02436 

 In this case, the threshold value was also estimated within the positive range of 
values, however at a slighter higher value, namely at a 2.4% return.

The estimation results for the SETAR and LSTAR models reveal that investors act 
quickly to seize investment opportunities as no delay was found in both models and 
the threshold values are very close. 

4.2.2. Comparing nonlinear and linear models

After selecting the best SETAR and LSTAR, respectively, within their class of models, 
we compare these estimated models with benchmark AR models, and a generalized 
AR model, AAR. We use two basic AR models: the benchmark AR(1) model as well 
as an AR(2) model. We also used an AAR model as a second class of benchmark 
models. The tables below compare the results based on two criteria, the AIC criterion, 
as well as the MAPE criterion for forecasting, both criteria being derived from the 
model behavior on the sample. 

Table 7 

Model Comparison for the BET series 

 AIC MAPE 

AR(1) -12377.5 1.475 

AR(2) -12375.8 1.491 

SETAR -12413.2 1.817 

LSTAR -14443.5 1.958 

AAR -12389.2 1.891 
Source: Own computations. 

Interestingly, the behavior for the time series is quite similar. For both cases, in terms 
of AIC criterion, the best models are SETAR and LSTAR, with a slight advantage for 
the LSTAR type model. From the forecasting capability, the ranking changes with the 
basic AR models ranked as the best. At the same time, the SETAR class has a better 
forecasting performance relative to the LSTAR or ARR class models. 

One possible explanation for this behavior is that the nonlinear models proposed do 
catch some nonlinearity that exists in the data; however, they are not either nonlinear 
enough or sufficiently complex in order to catch the changes in the dynamics of series, 
as seen from the fact that simple AR models outperform them. It is also important to 
notice that the results in the financial literature reached the conclusion that the 
baseline AR model remains a powerful benchmark, and a rough expression of 
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financial market movements in the dynamics of returns due to the high correlation in 
returns between successive days. 

5. Conclusion

The recent financial crisis showed that there is always a risk that the market as well as 
the overall economy start to move unexpectedly and with no connection the previous 
middle to long run trend. These dynamics ask for more refined approaches than the 
standard econometric approach. One such framework is threshold autoregressive 
modeling which allows for a different behavior along each of the regimes assumed. 

We investigate the existence of nonlinear patterns in the dynamics of financial data in 
Romania. We use daily data of the BET series from 2004 to early 2010. Based on 
several nonlinearity tests, the Keenan and Tsay tests, we reject the null hypothesis of 
linearity. We use several types of threshold models and compare their fitness and 
forecasting performance with basic AR models. We found that the LSTAR and SETAR 
models fit best the data; however they cannot outperform the simpler AR models in 
terms of forecasting. These results suggest that although there are nonlinear features 
in data, the threshold models are not complex enough to reveal the data complexity.
The best estimated SETAR and LSTAR models can also be given an economic 
interpretation. We may think that the estimated lower regime corresponds to the 
increasing phase of returns and the upper regime corresponds to the decreasing 
phase of the returns. When the returns are low, investors are interested to enter the 
market in order to obtain profit. The estimation results for the SETAR and LSTAR 
models reveal that investors act quickly to seize investment opportunities as no delay 
was found in both models and the threshold values are very close. 

Some future studies should research for models that can reveal better the 
nonlinearities in the Romanian financial markets. 
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