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Abstract

A recent article (Pavelescu, 2009) proposes a correction to the conventional student-t 
test of significance in linear regression models, but offers no formal description of its 
properties. This comment formally characterizes the sampling properties of the 
corrected student-t statistic. In application to multifactorial regressions, it turns out that 
the corrected student-t statistic is not ancillary – its sampling distribution depends on 
unknown nuisance parameters.Therefore, it is impossible to reasonably compute 
critical values and operatively designate a rejection criterion using such a test statistic, 
which makes the proposed testing procedure impractical.  Some suggestions 
regarding the search for similar testing procedures are proposed and a Bayesian 
alternative is further discussed. 
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1. Multifactorial Regression and Collinearity 
Collinearity and its exotic counterpart multicollinearity are well explored topics in 
econometric literature (for an extensive overview and analysis, see [Judge, Hill, 
Griffiths, Lütkepohl and Lee, 1988, pp. 859-881)].  The fundamental problem for 
econometricians is that strong linear relationships amongst explanatory variables 
pose not only a formidable impedance on statistical inference regarding individual 
parameters, but a vastly elusive one at that, since economists rarely have direct 
control over the data generating process. From a statistics perspective, the common 
view projects that collinearity undermines accurate inference through its effect on the 
standard errors of individual parameter estimates: ceteris paribus, stronger collinearity 
proportionately increases standard errors, leads to wider confidence intervals, and 
lower test statistics (in absolute value) in significance tests.
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Countless methods of “detecting” multicollinearity and containing its effects ex post
have been proposed.   In lieu of redesigning experiments that generate the data or 
obtaining larger samples (options which are most often simply not available to 
econometricians), the operational “solutions” in the literature almost exclusively focus 
on either the systematic inclusion/exclusion of certain explanatory variables, or the 
reconditioning of explanatory variables such as to induce orthogonality and yield lower 
degrees of collinearity according to some predetermined measure, depending on a 
particular case of interest.  From this viewpoint, the proposal of a different test statistic 
in (Pavelescu, 2009) to generally mitigate multicollinearity in linear regression 
significance testing offers a potentially interesting new perspective on an exhausted 
subject.  More specifically, (Pavelescu, 2009) formulates a corrected student-t statistic 
which is claimed to aid the researcher in countering the effects of collinearity on 
assessing the “relevance” of estimated parameters.  This claim, however, is scarcely 
justified in the traditional sense of hypothesis testing analyses as it lacks an in depth 
discussion of any properties beyond its algebraic relationship to the standard student-t
and F statistics. 

It must be emphasized that in order to understand how such a proposed testing 
procedure is optimally applied, a diligent researcher requires a rigorous examination 
of its theoretical properties, especially in comparison with already existing and 
commonly accepted techniques.  This often involves a comparison of sampling 
distributions, critical regions, power functions, etc.  Of course, the primary property 
that any viable test statistic must exhibit is that it is ancillary under the null hypothesis, 
meaning that its null sampling distribution does not depend on unknown parameters.  
The need for this requirement is clear: a test statistic that is not ancillary in its 
sampling properties fails to achieve any sense of standardization, which is always the 
foremost goal of its application, and consequently, its magnitude is of no practical 
meaning.

Unfortunately, the corrected student-t statistic is exactly of such non-ancillary nature 
under the null hypothesis for any regression with two or more explanatory variables, 
and this fact is attested to formally in the following section.  Moreover, it is not directly 
obvious how this statistic might be restructured to generate an ancillary statistic (even 
one that is not immediately operational), and therefore, it is impossible to utilize the 
corrected student-t statistic in constructing critical regions, as applicable to 
multifactorial regressions.  It is further shown that in the case of a unifactorial 
regression (with exactly one explanatory variable), employing the corrected static to 
derive a critical region in the manner implied by the text results in a testing procedure 
that is equivalent to the traditional student-t test. 

To facilitate the ensuing exposition, the remainder of this section is dedicated to a 
basic overview of the distribution theory relevant to the multifactorial Classical Normal 
Regression (CNR) model with emphasis on the properties that are of particular 
interest to our discussion.  Hence, recall that the multifactorial regression postulates a 
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 This is, however, not generally true for linear combinations of parameters.  For an example 

where multicollinearity leads to increased power in a hypothesis test on a sum of regression 
parameters, see (Goldberger, 1991, pp. 250-251). 
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linear relationship between a dependent variable  and  explanatory variables 

 of the form 

(1)

where in accordance with the assumptions of the CNR model, .

Without loss of generality, we designate  to be the parameter of interest and 

 and  to be the nuisance parameters.  Moreover, we will denote the 

Ordinary Least Squares (OLS) estimators of , and  with , and , respectively. 

In what follows, it is convenient to express the estimators employing the following 
matrix notation: let  be the  vector consisting of dependent variables 

,  the  vector , and let  denote the 

matrix with elements  and  for  and .

Furthermore, define , with  representing the  row of  and 

denoting the element of  located at row  and column .  Then, 

(2)

(3)

It is well known that  and  are stochastically independent and marginally follow 

the distributions 

(4)

(5)

By letting  represent the coefficient of determination obtained from regressing 

on all other explanatory variables , and  the sample variance of , we may 

write .  From this expression, the conventional view on the effect of 

multicollinearity is immediately evident: as collinearty between  and other 

explanatory variables increases,  and for a fixed sample size .

Thus, multicollinearity is typically related to imprecise estimates, which is in turn, 
reflected in wide confidence intervals as well as weak power in hypothesis tests on 
individual parameters. 

The standard student-t test of significance, which is synonymous with the hypothesis 
test 

,

proceeds by constructing the student-t statistic



Institute of Economic Forecasting

Romanian Journal of Economic Forecasting – 3/201056

(6)

and defining the rejection rule 

where the critical value  is by design a function of the significance level  and is 

computed in a way that insures the probability of a Type I error (e.g. probability of 
proclaiming a parameter “statistically significant” when it is in fact zero) occurring is no 
greater than .  The particular formula to determine  for a desired significance level 

is predicated on the fact that by (4) and (5), the student-t statistic  under the null 

hypothesis follows the student-t distribution with  degrees of freedom: 

(7)

and hence the probability of Type I error is 

(8)

where  denotes the cumulative distribution function (cdf) of the student-t

distribution with  degrees of freedom.

Thus, the critical value  is straightforwardly computed by equating 

, and is practically feasible due to the fact that this expression 

contains only the known quantities  and .

2. Properties of the corrected student-t test

Now, consider the corrected student-t testing procedure proposed in (Pavelescu, 
2009).  The specific test statistic, termed corrected student-t statistic, is explicitly 
provided in equation (19) of (Pavelescu, 2009) as 

    with (9)

where  denotes the sample correlation between  and .

For our purposes, it will be more convenient to write  as 

(10)

where  (with  denoting the sample covariance between  and ) is the 

OLS slope estimator obtained by regressing  on  only.
2
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Note that expressing  this way does not affect the functional definition. For completeness, it 

would be more appropriate to define 
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Aside from the test statistics, (Pavelescu, 2009) offers no formal account of the 
remaining steps in completing the proposed hypothesis test (rule for rejecting the null 
hypothesis, computation of the critical region, etc.).  We deduce from the discussion in 
the text, that the author intends the rejection rule to be

3

Let us first consider the properties of this testing procedure in application to 

unifactorial linear regressions, where .  Since in this case  and 

always have the same sign (e.g.  if and only if ), it is clear that .

Moreover, applying  on  is equivalent to applying  on , and hence,  for 

the same significance level .  Consequently, the two tests are equivalent in 

unifactorial regressions. 

Of course, we are more interested in the general case with  explanatory 

variables, where the relationship between  and  is now more complex and the null 

sampling distribution for  must be derived explicitly in order to allow for a proper 

examination of its properties.  This distribution is obtained through a change of 

variable technique on the transformation (  given in (9)-(10), where the 

sampling distributions of  and  are provided in (4)-(5), and the distribution of 

 is derived as follows: 

1. Note that for the -factorial regression, the coefficient estimate  may be 

expressed as  with  representing the OLS slope 

estimator obtained by regressing  on .  Therefore,  if and only if 

.

2. Denoting , it is straightforward to show that conditional on , the 

statistic  is independent from  and follows the distribution 

(11)

where  is the population analogue of .

3. Accordingly, the probability of interest  under the null 

hypothesis  is derived as 

                                                                                                                               

in order to accommodate the special case when  (or equivalently .  However, 

since this exerts no practical impact on neither the discussion in (Pavelescu, 2009) nor the 
present text, we prefer to ignore the minor theoretical deficiency in favor of remaining 
consistent with the original definition in (Pavelescu, 2009).

3
For example, see the discussion in section 2 of (Pavelescu, 2009).
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(12
)

where  denotes the cdf of the standard normal distribution. Note that the above 

equation fully specifies the conditional sampling distribution of  since 

.

4. Now, applying the change of variable yields the sampling distribution of :

(13)

where  denotes the probability density function (pdf) of the standard normal 

distribution,  is the pdf of the  distribution with  degrees of 

freedom, and .

Observe that since  depends on the unknown nuisance parameters 

(through ) and  the sampling distribution (13) also depends on these 

parameters, and more importantly, so does the probability .  Thus, 

attempting to employ the corrected student-t statistic with rejection rule  leaves us 

in a rather paradoxical position: if we carry out the hypothesis test by choosing an 
arbitrary critical value (such as  or , for example), then the probability of 

Type I error associated with such a testing procedure depends on unknown 
parameters, and hence, we have no way of assessing the degree to which such a test 
will mislead us into erroneously proclaiming a coefficient significant, when it is in fact 
zero.  On the other hand, it is operationally impossible to compute the critical value 

based on a desired significance level by solving the equation  (where 

 is the cdf of the distribution in (13)) since the solution will once again depend on 

 and .

Clearly, either option is unreasonable in the context of statistical inference through 
hypothesis testing.  Therefore, the corrected student-t statistic as formulated in 
(Pavelescu, 2009) is not operational, least of all an improvement upon the 
conventional student-t test in discerning “confusions between truly relevant estimated 
values and ‘statistical illusions’” arising from collinearity in the explanatory variables. 

3. Remarks 

It is worthwhile to point out that the result of the previous section arises directly from 

 being defined in terms of the coefficient estimator , which suggests that there 

may exist several ways to circumvent this problem.  One simple approach worth 
considering is the test statistic and consequent testing procedure derived by defining 
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explicitly the distribution of  in terms of fixed probabilities, such that 

.
4
  Although such a testing procedure is of little practical value, 

it turns out that it is theoretically interesting in the sense that its properties are in many 
important ways analogous to the properties of a wide variety of conceivable tests 
within the framework under consideration.  Hence, we shall refer to such a test as the 
alternate student-t test and briefly discuss its properties in the following. 

Under the condition that  is fixed, the null distribution of  is straightforward to derive 

– it is once again the student-t distribution with  degrees of freedom – and 

the critical value  may now be found by solving the equation ,

which yields 

Therefore, the alternate test is operational and its properties are tractable.  To that 
end, we invoke the commonly accepted approach to formal examination of the 
properties of a hypothesis testing procedure by focusing on the implied power
function.

Recall that the power of a test is the probability of rejecting a null hypothesis given 
that the alternative hypothesis is true.  The corresponding power function generates 
this probability for a particular value of the parameter permitted under the alternative 
hypothesis.  Moreover, a test is unbiased if and only if its power is greater than or 
equal to the significance level for all parameter values under the alternative 
hypothesis, consistent if and only if the power converges to one as the sample size 
approaches infinity, and it is called uniformly most powerful (UMP) if and only if it 
exhibits greater power than all other tests (or within a class of tests) for each value of 
the parameter under the alternative hypothesis (for further discussions regarding this 
terminology, see for example (Poirier, 1995, pp. 351-373), (Judge, Hill, Griffiths, 
Lütkepohl, & Lee, 1988, pp. 92-109), (Greene, 2003, pp. 892-894), and (Goldberger, 
1991, pp. 217-220)). 

To the extent that we are interested in the properties of the alternate test defined 
above in comparison with the standard student-t test, we restate for convenience 
some well known properties of the student-t test.  First note that its power function 
may be written as 

(14)

where  denotes the cdf of the noncentral-t distribution with noncentrality

parameter  and  (hence,  iff ).  It follows that the student-t test 

is

                                                          

4
Note that for  to be a “fixed probability,” it must be set according to known quantities not 

involving the dependent variable ; thus, it may include , , or any function of the 

explanatory variables (i.e., , , etc.) since the CNR treats  as 

nonstochastic.
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P1(a) unbiased (i.e.  for all )

P1(b) UMP amongst all unbiased tests 
P1(c) consistent (i.e.  as  for all )

P1(d) robust to the normality of errors assumption in large samples 
P1(e) robust to the normality of errors assumption in small samples to the extent that 

properties P1(a)-P1(c) “hold when the normality assumption is generalized to 
other members of the spherical family of distributions.” (Poirier, 1995, p. 502) 

P1(f) closely related to confidence intervals associated with the parameters of 
interest

Similar to (14), the power function of the alternate test may be expressed as 

(15)

For ease of demonstration, the comparison of the functions in (14) and (15) is 
illustrated graphically in Figure 1.  Panels (A) and (B) consider the functions with 

 degrees of freedom whereas Panels (C) and (D) represent the 

analogous plots with  degrees of freedom.  Moreover, Panels (A) and 

(C) depict the power function of the alternate test  for several values of 

 while the mirror cases with  are captured in Panels (B) and (D).

A quick examination of Figure 1 readily yields the following properties of the alternate 
test: 

P2(a) when , it is unbiased and uniformly less powerful than the standard 

student-t test 
P2(b) when , it is biased, more powerful for  and less powerful for 

P2(c) when , it is biased, more powerful for  and less powerful 

elsewhere
5

P2(d) when , it is biased, more powerful for  and less powerful for 

P2(e) when , it is biased, more powerful for  and less powerful 

elsewhere
P2(f) when , as  increases  for  and  for 

P2(g) when , as  increases  for  and  for 

While it is immediately evident by P2(a) that setting  always generates an 

inferior test in comparison with the standard student-t test, one interesting implication 
of P2(b) and P2(d) above is further apparent: if we reconsider the significance test 

                                                          

5
 is the value obtained as the solution to the equation 

with  for a given value of .  Note that if  solves the equation above for 

, then  is the corresponding solution for .
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with a one-sided alternative hypothesis (e.g. either  or ), then 

the alternate test is unbiased and UMP for appropriate assignments of  and 

. Note, however, that for , the alternate student-t test is identical to the one-

tailed standard student-t hypothesis test with  (analogously, 

corresponds to the one-tailed test with ).  In this sense, an interesting 

interpretation of the alternate test is that of a weighted combination of the one-tailed 
and two-tailed student-t tests. 

Figure 1 
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Regarding the alternate testing procedure as a balance between the one-tailed and 
two-tailed student-t tests, the question we seek to answer is when might such 
balancing procedure be useful?  That is, when is it desirable to set  strictly greater 

than zero or strictly less than one?  The answer lies in the a priori knowledge of the 
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researcher regarding .  To that end, suppose this knowledge may be classified as 

follows: 

C1. Any value of  is equally likely (i.e. no prior information) 

C2. Any value of  is equally likely;  is impossible 

C3. Any value of  is possible; values  are heavily favoured

C4. Any value of  is equally likely;  is impossible 

C5. Any value of  is possible; values  are heavily favoured

Now, consider first the choice of hypothesis test under C1.  In this case, we should 
clearly prefer a test which is unbiased over the entire support of , and since the two-

tailed student-t test is UMP in this class of tests, it is the obvious choice.  In the case 
described by C2, on the other hand, we should readily sacrifice any testing power over 
the region  in favour of increased power over the region , and hence, the 

most efficient test under such prior beliefs is the one-tailed student-t test (or 
equivalently the alternate test with ).

If our belief is according to C3, we focus our preference on a test which exhibits 
reasonably high power over the region , but not entirely void of power for 

negative values of  close to zero.  In particular, consider the alternate procedure with 

 corresponding to  in comparison with the one-tailed and two-tailed student-t 

tests in application to this setting.  While the one-tailed student-t test is more powerful 
over  than the relevant alternate test, we might consider that this difference 

in power is insufficient to justify the extensive power loss characterizing the one-tailed 
test in reference to the region .  Conversely, while the two-tailed test is more 

powerful over , the alternate test dominates in power over the focal region of 

interest .  Thus, depending on how likely we believe  to be in the region 

 relative to , there may quite possibly exist strong justification for 

preferring the alternate test with  to either the two-tailed or one-tailed 

standard student-t tests.  We emphasize, however, that by P1(c) and P2(f)-P2(g), the 
region  where the alternate test might be more powerful than the student-t 

test shrinks as  grows.  The latter conclusion, therefore, is admittedly more 

applicable to small sample cases relative to large samples. 

The purpose of the above analysis is to underscore two significant comments with 
respect to a more general and realistic search for a testing procedure targeting an 
improvement upon the standard student-t test.  First, any worthwhile competing test 
will inevitably exhibit sharp trade-offs in comparison with the student-t test.  That is, a 
test which improves upon the student-t test in terms of some properties P1(a)-P1(f) 
without sacrificing others does not exist, even in special cases (so much is obvious 
from P1(a) and P1(b) alone).  On the other hand, it is difficult to imagine a trade-off 
that is always acceptable in general, as this would clearly imply that whatever property 
is being sacrificed under the said trade-off is generally unimportant.  Accordingly, the 
best outcome of the search that one can realistically hope for is a test that generates a 
favourable trade-off in certain special cases.  Yet, this may be of immense practical 
value to a researcher!  We emphasis, therefore, that while it is not in the least the 
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intention of this comment to discourage any future search for improved testing 
procedures, we simply stress that it is absolutely imperative to present a rigorous 
formal treatment in comparing the discussed properties between the proposed test 
and the student-t test. 

As a second point of interest, we turn our focus specifically on improvements in terms 
of testing power.  In this sense, we claim that in close resemblance to the alternate 
testing procedure analysis above, the relationship of the “special cases” to prior 
information defining favourable application of such a test will extend to the general 
search for competing test procedures.  In particular, if there exists a practically 
sensible test which is preferred power wise to the standard student-t test in a certain 
case, such a special case will arise according to the researcher’s prior belief regarding 
possible values of  over certain regions, and more specifically, a belief relating the 

degree to which  is more likely to fall in a certain region relative to other regions.  The 

testing procedure search under these conditions, therefore, is closely related to the 
probabilistic a priori belief regarding the parameter values. 

The focus on improvement in testing power, of course, is propelled by the 
fundamental motivation being cast in terms of uncovering a test procedure that 
improves statistical inference in presence of multicollinearity.  In that sense, we return 
to the conventional view that the main adverse effect of collinearity on inference is 
attributed to the decrease in testing power.  It remains, therefore, to resolve this 
motivating foundation with the motivation laid out in (Pavelescu, 2009).  In fact, a 
careful interpretation of the latter text reveals that the two motivations are closely 
aligned, although stated in slightly different terminology.

6
  The discussion of Section 3, 

in particular, merits a closer examination. 

Section 3 of (Pavelescu, 2009) is dedicated to defining algebraic conditions under 
which a student-t statistic decreases in absolute magnitude when an additional 
explanatory variable is introduced into the linear regression.  Stated formally, denote 

the student-t statistic defined in (6) as , thereby relating that it is the statistic 

obtained in a significance test of  using the estimates derived from the -factorial

specification of (1).  The analogous  is then the student-t statistic obtained from 

the -factorial regression.  The section, consequently, concentrates on the 

conditions (in terms of collinearity) under which .  The author argues 

that this comparison is important since holding  fixed, increasing  necessarily 

                                                          

6
Note that certain comments in (Pavelescu, 2009), such as 

“...taking into account only the absolute values of the Student test, it may lead to the 
situation where ‘statistical illusions’ are considered as very good estimations for the 
proposed model” (p. 66) 

 may be misinterpreted as implying that the search for an improved testing procedure is 
predicated on a desire to reduce to the risk of erroneously rejecting the null hypothesis.  
Insofar as this risk corresponds precisely to the definition of Type I error, we assume that 
such an interpretation is not the author’s intention and do not pursue it further.  That is, the 
ability of the researcher to explicitly control the probability of Type I error occurrence lies at 
the very foundation of the hypothesis testing paradigm and merits no further explanation. 
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reduces the degrees of freedom in the estimation, and therefore, leads to the increase 

in critical value .

Observe that underlying these comparisons of , , , and  is a concern 

regarding the loss in testing power of the significance test related to the -

factorial regression in comparison with the test related to the -factorial regression.  

Additionally, the conclusion drawn in Section 3 is that any reduction in the magnitude 

of  when compared to  is inefficient, and to that end, the reasonable 

interpretation of the corrected student-t statistic must be that it systematically 

counteracts the algebraic forces that reduce , thereby mitigating this inefficient 

decrease.  We note, however, that casting the statistical power discussion in terms of 
such a test statistic magnitude comparison introduces a certain degree of confusion. 

In terms of motivation, assigning inefficiency to the relative decrease of , in 

general, is largely misleading.  To see this, consider first the case where the -

factorial regression is the true model (i.e. ), and denote the OLS parameter 

estimators of  generated by regressing  on  as .  In this case, 

employing the short model in (1) yields inference that is subject to the famous omitted 
variable bias.  In particular, the sampling distributions derived in (4)-(5) are no longer 

correct.  To appropriately characterize the resulting sampling distributions, let  be 

the OLS slope estimator in the auxillary regression of  on the residual ,

which is in-turn obtained from regressing  on the remaining explanatory variables 

.  Then the correct sampling distributions of  and  (as defined in (2)-(3)) 

are

(16)

(17)

where  represents the noncentral chi-square distribution with  degrees of 

freedom and noncentrality parameter .  Consequently, the bias of the estimator  is 

, while the bias of the estimator  is .  It is clear, therefore, that 

unless , the test statistic does not follow a student-t distribution.  In fact, 

its sampling distribution in this case depends on the nuisance parameters , ,

and consequently, attempting to employ this test statistic in practice gives rise to 
precisely the same operational difficulties relevant to the corrected student-t statistic 
discussed in the previous section (it is certainly illogical to compare its value to 

 or any other value found in the student-t tables). 

The student-t statistic  obtained from the full regression, on the other hand, does

follow the student-t distribution with  degrees of freedom and is readily 

usable in carrying out statistical inference.  Regardless of how one defines 
inefficiency, therefore, working with the correctly specified -factorial model and 

the resulting  is certainly desirable.  In general, however, since  and  are 
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characterized by different sampling distributions (especially with  following an 

intractable distribution), there is admittedly little sense in comparing their magnitudes 
in the presence of omitted variable bias. 

The case where the discussion of (Pavelescu, 2009), Section 3, is more relevant, 
perhaps, is when we are sure that .  Then, the short model with  explanatory 

variables is the true model, while the -factorial model is said to be 

overspecified.  Overspecification, however, does not introduce bias in the parameter 
estimates; rather, including the excess variable  only inflates their standard errors 

(i.e.  are still unbiased, but are no longer minimum-variance estimators).  

Therefore, although both  and  follow student-t distributions (with 

and  degrees of freedom, respectively), significance testing with  is 

necessarily less powerful than the corresponding test with , and in this sense, 

inference derived with the -factorial regression is always less efficient than 

inference derived with the -factorial regression.  On other hand, if we are sure that 

, there obviously exists no realistic scenario under which we would employ 

the -factorial model. 

Following this logic, a quest for a more efficient test statistic must therefore resemble 

a search for a test statistic that reflects the properties of  when  and 

when , in the realistic case when  is unknown.  Alternatively stated, we 

seek a test statistic that systematically identifies the case more efficiently

than .  An econometrician in pursuit of such a statistic, however, must readily 

admit that this is a tantamount (with inclination towards insurmountable) task by 

simply observing that (regarding  as unknown)  is already constructed from 

the minimum variance estimator of , namely .  In what sense, therefore, may 

one expect an alternative statistic to identify  more accurately than ?

In contrast to the preceding discussion, it appears advisable to maintain focus in 
motivating a search for an improved testing procedure on the effect of collinearity 
within the realm of a correctly specified model.  As discussed in Section 1 of the 
present text, the epicentre of this effect lies in the variance of the individual parameter 
estimate under consideration.  To that end, however, it should be noted that the effect 
of collinearity on such estimates is significant only relative to the sample size.  In fact, 
if the joint explanatory vector  is independent across observations , the 

effect (on the variance of an individual parameter estimate) of an increase in the 
sample size by one observation is equivalent to the effect of a decrease in the 

auxiliary coefficient of determination  by .  Intuitively, both collinearity 

and sample size may be viewed as two very similar factors that determine the 
variability in the sample, which is the primary source of information offered by the data 
for statistical inference.  Hence, the extent of either effect (high collinearity or low 
sample size) on individual parameter inference must be interpreted accordingly. 
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In bringing the discussion on the severity of collinearity to a close, we refer to the point 
of view offered by the esteemed econometrician Arthur S. Goldberger (Goldberger, 
1991, p. 252): 

To say that “standard errors are inflated by multicollinearity” is to suggest 
that they are artificially, or spuriously, large.  But in fact they are 
appropriately large: the coefficient estimates actually would vary a lot 
from sample to sample.  This may be regrettable but it is not spurious. 

Note that from a purely classical perspective that obstinately refutes all prior 
information in statistical inference, this claim is undisputable.  That is, one certainly 
cannot commit inferential exclusivity to a set of data, and upon receiving vague 
inference from that data, dismiss this vagueness on the grounds that the data is 
“poorly conditioned.”  Within the bonds of data exclusivity, one simply has no way of 
judging to what extent is a confidence interval “unreasonably” wide, since there exists 
no basis for comparison in succinctly defining “unreasonably.”  Hence, it is not “the 
relevance of the estimated parameters” that is diminished by collinearity (Pavelescu, 
2009), rather only the ability of the data to identify their relevance, and without an 
ulterior source of information this deficiency is incircumventable; different techniques 
of manipulating the data can only exploit more efficiently (or less efficiently) the 
variability already present, but will never induce more variability. 

On the other hand, it is entirely reasonable to gauge the degree to which “standard 
errors are inflated” by admitting prior information because the prior belief provides 
exactly the basis for comparison lacking in a purely classical paradigm.  More 
specifically, one may justifiably claim that a confidence interval is “too wide” if it 
extends into regions where a priori the researcher assigns a low degree of probability 
in the sense that the information offered by the data regarding the parameter of 
interest contradicts the prior information.  In addition, the extent of this “contradiction” 
may be sensibly measured when the prior information is formalized in a probabilistic 
manner.  It is in this sense that prior information provides an additional instrument, 
which in the presence of collinearity provides the crucial supplement to variability 
lacking in the data.  This, in turn, reaffirms our previous claim that hypothesis test 
improvements in presence of collinearity must be closely linked to the use of 
probabilistic prior information in statistical inference. 

Insofar as an investigator would be willing to admit such prior beliefs in conducting 
inference, however, it would be natural for her to consider the Bayesian framework as 
an alternative to the classical hypothesis testing centred methods altogether.  
Whereas the example at the beginning of this section involving the alternate testing 
procedure demonstrates the awkwardness associated with incorporating prior 
information in classical hypothesis testing, Bayesian methods are well known to be the 
most efficient way of systematically combining prior information with the data in 
generating robust statistical inference (for introductory Bayesian texts, see (Koop, 
2003) and (Gelman, Carlin, Stern, & Rubin, 2003)).  To that end, we conclude with a 
simple demonstration of how prior information may be employed in alleviating adverse 
effects of collinearity within the Bayesian linear regression framework (Koop, 2003, 
pp. 15-85), (Gelman, Carlin, Stern, & Rubin, 2003, pp. 351-385), (Poirier, 1995, pp. 
524-580).
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4. Bayesian Example 

In concept, Bayesian inference differs fundamentally from classical inference in the 
following sense: the focus of Bayesian inference is on what the parameter is most 
likely to be, whereas the most common concern of classical inference is on what the 
parameter is definitely not.  Nevertheless, there are strong practical parallels between 
the two approaches.  For example, given a particular significance level  the 

posterior probability interval (commonly constructed as the highest posterior density 
(HPD) interval) bears a close resemblance to the confidence interval for 

either individual parameters or a combination of parameters, while the mode of the 
posterior distribution is comparable to the parameter estimate generated by classical 
techniques.  More importantly, as the sample size increases, both the posterior modes 
and posterior probability intervals converge to the corresponding Maximum Likelihood
estimates and confidence intervals (Poirier, 1995, pp. 306-307). 

Note that the latter fact reflects exactly the previously outlined intuition regarding the 
effect of collinearity relative to sample size.  Insofar as the effect of collinearity is most 
apparent in smaller samples and diminishes proportionally as  increases, it is crucial 

that whatever instrument is adapted to offset the effects of collinearity in smaller 
samples reduces in relative importance as the sample size grows.  Employing prior 
information through Bayesian techniques achieves just that: prior information is most 
influential on the posterior distribution, and hence most effective in combating 
collinearity, when  is small, while this influence is proportionately reduced as 

increases and vanishes altogether as .

We illustrate the Bayesian approach in this context through a simple simulation 
example based on some well-known results of the Bayesian linear regression.  
Accordingly, suppose the model of interest is 

, (18)

and the true parameter values are 

Using a pseudo-random number generator, we simulate three data samples of 
 for , , and , respectively, and compare the 

inference one would obtain under the Bayesian framework to that of the classical 
framework.  Since our primary interest lies in the influence of collinearity on statistical 
inference, the simulated data is generated to yield a relatively high sample correlation 
between the explanatory variables while each pair  is sampled independently.  

Moreover, the experiment is designed such that the correlation between  and 

emits a stronger effect on the precision of the estimates of  relative to .  Summary 

statistics of the simulated datasets are reported in Table 1. 

Now, consider how an econometrician might approach the task of estimating this 
model aware only of the descriptive properties of the data and operating under the 
assumption that the linear model is correctly specified as given in (18).
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Table 1 

Simulation Data Summary Statistics 

correlation

average 
standard
deviation 

Assume further that the econometrician is in possession of the smallest sample 
( ) and is concerned that the strength of collinearity relative to this sample size 

may lead to uninterestingly vague inference regarding her primary parameters of 
interest  and .  On the other hand, her theoretical training endows her with some 

key intuition regarding the values of these parameters.  She summarizes her beliefs 
as follows: 

1. centred at ,

2. symmetric (i.e.  is just as likely as , etc.) 

3. highly unlikely that  or 

These beliefs may be formalized in terms of prior probability distributions regarding 

and .  Consequently, we shall proceed with a general form of the prior distribution 

given by 

, (19)

where  denotes the inverse gamma distribution (for example, see (Gelman, 

Carlin, Stern, & Rubin, 2003, pp. 573-577)).  It can be shown that the implied marginal
distribution of  is 

(20)

and therefore, all three prior beliefs described above may be accommodated in (20) 
by appropriately setting the parameters  and .  Specifically, let ,

, .  This ensures that the modes of the distributions for 

 and  are  and , respectively, while , where 

may be set to any reasonably small value, (e.g. the ensuing results are based on 
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).  The symmetry condition is, of course, automatically satisfied since the 

student-t distribution is naturally symmetric. 

Note that Bayesian methods require that prior distributions be properly specified for all
parameters.  Since, the researcher is neither particularly interested in  and , nor 

does she posses very specific beliefs regarding their values, she may specify , ,

, and  in such way that results in mildly-informative prior distributions for  and 

.  Such mild beliefs, for example, are sufficiently represented with the following 

values: , , , .  It is worthwhile to observe that using this 

complete prior specification, the researcher may derive the relevant distribution of ,

identify the implied region where  is most probable and attempt to design a 

hypothesis test that dominates in power over that region at the expense of being 
inferior over the less probable regions.  In relevance to the discussion of the previous 
section, we mention that while the implied distribution of  is complicated form both 

theoretical and practical aspects in general, the present beliefs regarding

 and  imply that .  Thus, for example, the alternate

hypothesis test previously outlined is more powerful over the region  relative to 

the student-t test for  at  (for larger , the corresponding ).

On the other hand, if we choose to proceed with the Bayesian inference, we focus on 
updating our prior belief by the observed data sample.  This, in turn, requires the 
construction of the likelihood function, which is operationally expressed as the 
distribution of the dependent variable conditional on the parameters: 

(21)

where  denotes the identity matrix.  Using (19) and (21), the joint posterior

distribution is obtained through Bayes’ Rule as 

(22)

and contains all information necessary to carry out statistical inference on the 
parameters.  While exact analytic expressions for posterior distributions are, in 
general, intractable (most often, posterior inference is based on simulating from the 
posterior distribution), the Bayesian linear regression model yields fairly simple and 
practically straightforward posteriors. 

Consequently, define the following notation: let ,

 (i.e. a  diagonal matrix), and 

(23)
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The joint posterior distribution of all model parameters in our case is then given by 

, (24)

whereas the marginal posterior distributions of interest are obtained as 

(25)

The marginal posterior distributions for each of the three cases (of varying sample 
size) under examination are plotted along with the corresponding prior distributions for 
the parameters  and  in Figure 2, Panels (A) and (B), respectively.  More 

specifically, Panel (A) illustrates the evolution of the posterior distribution of  from 

the prior as the sample size grows while Panel (B) depicts the analogous 
phenomenon for .  The intuition regarding the influence of prior information on 

posterior inference as  increases is immediately evident.  In both cases, with each 

increasing sample size, the posterior distribution collapses around the mode, which in 
turn, converges to the true parameter value.

Figure 2 

Prior and posterior distributions for  and 
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Observe, however, that the collapsing effect is distinctly slower for  in comparison to 

.  This is precisely a reflection of the influence of collinearity, which is by design 

more influential in the posterior distribution of than that of .  In fact, a closer 

examination of Panel (A) reveals that the posterior of  for  is not noticeably 

less dispersed relative to its prior distribution, but rather only exhibits a shift in location
towards the true value.  A more illuminating interpretation of the latter may be 
formulated as follows: the posterior distribution of  at  reflects a joint effort 

on the part of the prior information and the data whereby the information from the data 
is incorporated into more accurately centring the posterior while the prior maintains 
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the dispersion contained by substituting for the lack of certainty projected by highly 
collinear data with a priori information.  As a result, even with a relatively low sample 
size (i.e. relative to the degree of correlation in the explanatory variables), posterior 
inference regarding  is sufficiently informative. 

The important trade-off is, of course, that this gain in precision at  is strongly 

reliant on the prior beliefs, and hence, accentuates the importance of introducing prior 
information cautiously and in a manner that is convincingly justifiable.  On the other 
hand, as the sample size grows and the information projected by the data gains in 
vigour, the need for the prior to contain the posterior precision diminishes and its role 
in determining the shape of the posterior distribution is marginalized.  This is clearly 
reflected in Panel (A), by the progressive reduction of the posterior dispersion at 

 and  where the abundance of available observations overcomes 

the small sample deficiencies resulting from collinearity. 

Table 2 and Table 3 further reinforce this intuition in a numerical comparison of 
Bayesian and classical inference that would be conventionally employed in 
interpreting the results for each of the three sample size levels.

Table 2 

Bayesian/Posterior Inference 

 Probability 

Interval (HPD) mean / 
median / 

mode
standard
deviation

lower
bound

upper
bound

zero
outside
interval

yes 

yes 

yes 

yes 

yes 

yes 

Table 3 

Classical/Frequentist Inference 

significance test  Confidence Interval 

estimate 
standard
deviation

lower bound upper bound 

significantl
y different 
from zero 

no

yes 

yes 

yes 

yes 

yes 
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A quick overview of Table 3, which summarizes typical classical quantities of interest, 
reveals the diminishing effect of collinearity in increasing : for both parameters 

and , as  increases regression estimates converge to the true values, standard 

errors decrease, confidence intervals shrink, and significance test statistics grow (in 
absolute value).  Additionally, this phenomenon is accelerated for quantities related to 

, in evident parallel with the influence of prior information on posterior distributions, 

and is likewise explained by the more prominent influence of collinearity on the 
precision of  estimates. 

In this sense, the fact that the analogous posterior quantities detailed in Table 2 
converge to their classical counterparts is unsurprising.  In fact, at  the 

posterior modes of  and  (which for the student-t distribution are equivalent to the 

respective posterior means and medians) are nearly identical to the OLS estimates 

and , respectively.  Similarly, posterior standard deviations are approximately 

equivalent to the standard errors, as are the  posterior probability intervals to the 

 confidence intervals. 

Where the posterior inference differs most significantly from classical inference, 
however, is in terms of the parameter  for .  Here, it is worthwhile to note 

that the  classical confidence interval extends over negative values of .  Indeed, 

the limited sample is not informative enough to identify  as statistically significantly 

different from zero at the  significance level in the classical context (this is 

equivalently verified by the corresponding significance test failing to reject the null 
hypothesis  against ).  On the Bayesian side, Table 2 illustrates 

that with a sample of  observations, the lower bound of the  posterior 

probability interval is notably greater than the hypothesized null value .  In an 

analogous statement of significance, therefore, our Bayesian inference allows us to 
confidently proclaim  as statistically significantly different from zero, given our prior 

beliefs.
7

Incidentally, the corrected student-t statistic of (Pavelescu, 2009) for  is negative at 

all levels of  in our example.  This is easily verified by observing from Table 1 that 

 in all three cases while according to Table 3, .  In consequence, 

heeding the instructions prescribed in (Pavelescu, 2009, pp. 66-67), we should fail to 
“validate” this regression, which is correctly specified by experimental design,
regardless of the available sample size. 

                                                          

7
 In fact, the Bayesian paradigm defines a formal methodology of Bayesian Hypothesis Testing 

which is based on Bayesian Posterior Odds and is generally unrelated in terms of inference to 
the HPD interval approach demonstrated here; for more details see (Poirier, 1995, pp. 376-
392, 540-551).  However, the technical and conceptual complexities involved in a satisfactory 
discussion of posterior odds are beyond the scope of our purpose.  We only mention here that 
in the simplified setting of our example, and particularly insofar as our focus is on comparing 
posterior inference to classical inference, the HPD interval approach is sufficiently 
appropriate.
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