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FORECASTING VOLATILITY IN 
FINANCIAL MARKETS USING A 
BIVARIATE STOCHASTIC VOLATILITY
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Abstract

Most asset returns exhibit high volatility and its persistence. Heuristically, this paper 
focuses on the role of surprising information in high volatility processes and indicates 
that dismissing surprising information may lead to considerable loss in forecast 
accuracy. In response, this paper considers the corresponding extension of the 
modified MDH to surprising information, and proposes a bivariate stochastic volatility 
model incorporating surprising information in the volatility equations (BSV-SI), which is 
also designed to capture the dynamics of returns and trading volume. Using the South 
Korea stock index and trading volume series, it turns out that performance of the one-
step-ahead forecasts of the BSV-SI model is apparently superior to those of other 
competitive models. 
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I. Introduction 

Return volatility, considered as variation in the activities of a financial market, is a 
prevailing property. Its source has retained attention by academics and market 
participants, and recently has received much greater attention due to global financial 
turbulence that started in 2007 following the subprime mortgage crisis in the United 
States. One can reasonably infer that return volatility may be induced by trades 
related to the arrival of information in markets (as early influential work on this issue, 
see Clark, 1973; Copeland, 1976; Admati and Pfleiderer, 1988, among others). Much 
of the extant studies relating to information arrival focus on a single type of information 
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such as public information. Andersen (1996), however, indicates that there are two or 
more types of information arrival each of which has a different effect on trading 
volume and volatility persistence. In particular, Park (2010) has lately advocated 
decomposing information into surprising and general information to account more 
accurately for this aspect of the relationship between volatility and trading volume

2
.

Employing the Mixture of Distribution Hypothesis (MDH), Park (2010) theoretically 
demonstrates that, in contrast with general information, surprising information could 
give rise to a weak or even negative correlation between volatility and trading volume. 
His empirical findings with high frequency data also substantially support the different 
role of surprising information in a foreign exchange market.

In the spirit of Andersen (1996) and Park (2010), this paper highlights the effect of 
surprising information on volatility processes and forecasting performance. If 
surprising information is neglected, volatility models might be misspecified and lead to 
poor out-of-sample forecasts because exceptionally high volatility and its persistence 
caused by surprising information can give rise to a substantial overshooting in 
forecasting volatility. Therefore, this study is valuable in that none of previous studies 
focus on the crucial role of surprising information in predicting future volatility.
This paper also contributes to feasible extension of the modified MDH by Andersen, 
(1996), and corroborates the Park’s (2010) idea of the negative effect of surprising 
information on the relationship between volatility and trading volume. Furthermore, to 
detect the unobservable surprising information, this paper suggests a reliable method 
based on the extension of Khmaladze’s approach to quantile regression setting 
(Koenker and Xiao, 2002) in place of the method that uses a quantile regression of 
realized volatility (Andersen et al., 2003) on trading volumes

3
. The method based on 

Khmaladze’s approach is derived from the intuition that when surprising information 
arrives in markets, the trading volume variable may alter the location and shape of the 
conditional distribution of realized volatility at any upper quantile because the 
influence of surprising information on the relation between return volatility and trading 
volume may be different from that of general information. 

Forecasting volatility has received a great deal of concern from researchers as well as 
financial market participants because it provides a decisive key to risk management, 
the pricing of derivative securities, and portfolio optimization. Although the generalized 
autoregressive conditional heteroskedasticity (GARCH) models (Bollerslev, 1986) 
have been extensively used to model and forecast time-varying volatility, they have an 
obvious disadvantage in that current variance in the models is a deterministic function 
of past information. Realistically, however, volatility also depends on unconsidered 
factors and should still contain some random components. A more heuristic approach 
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to modeling time-varying volatility is a stochastic volatility (SV) model (Taylor, 1986 
and Harvey et al., 1994) in which the variance contains an unobserved component 
following a particular stochastic process. As expected, empirical results demonstrating 
the superior forecasting performance of several SV models are reported by Heynen 
and Kat (1994), Alizadeh et al. (2002), Sadorsky (2005), among others.

On the other hand, an important information source for volatility prediction is found in 
trading volume which is viewed as a proxy for the rate of information flow to the stock 
market and thus contemporaneously correlated with price changes (see e.g., 
Lamoureux and Lastrapes, 1990; Andersen, 1996; Liesenfeld, 2001). Nonetheless, as 
in the study by Lamoureux and Lastrapes (1990), entering contemporaneous volume 
into the volatility equation of an univariate model suffers from a possible simultaneity 
bias, induced by treating trading volume as an exogenous variable.

Overall, both surprising information and the sharing of information indicated by trading 
volume play important roles. This paper therefore proposes a bivariate stochastic 
volatility model incorporating surprising information in the volatility equations (BSV-
SI)

4
, which captures the dynamics of returns and trading volume, and gives rise to 

improvement in the performance of measuring and forecasting volatility. This model is 
intuitively attractive but seems to be empirically challenging because it has no closed 
form, and hence cannot be estimated directly by classical parameter estimation like 
maximum likelihood estimation. Fortunately, several estimation methods are now 
available due to recent increasing computational power (see Ghysels et al., 1996, for 
reviews of the related literature). In particular, Monte Carlo integration using Markov 
Chain (MCMC) (Jacquier et al., 1994) provides an efficient estimation method for the 
model.

In this paper we also investigate whether the forecasting performance of the BSV-SI 
model provides significant improvement in general forecast evaluation criteria over 
several SV models (a simple stochastic autoregressive volatility model, a SV with 
jumps model and a volume-augmented SV model) and historical volatility models with 
realized volatility (an autoregressive model for the realized volatility (AR-RV) and a 
heterogeneous autoregressive model for the realized volatility (HAR-RV) (Müller et al., 
1997; Corsi, 2004)

5
). The empirical investigation is for the South Korean stock index 

(KOSPI) and trading volume series for 1071 trading days in the period January 2, 
2004 to April 30, 2008. Five-minute frequency data is used to compute realized 
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volatility. The performance of out-of-sample forecasting of the models was evaluated 
by calculating one-step-ahead volatility forecasts over the 5-, 10-, 20- and 50-day 
horizons.

The remainder of the paper is organized as follows. The next section briefly describes 
the theoretical framework with surprising information. The third section presents the 
BSV-SI model and suggests a method based on Khmaladze’s approach to detect 
unobservable surprising information. Using high frequency and daily data of KOSPI 
index and trading volume, the fourth section provides an empirical illustration that the 
out-of-sample volatility forecasts of the BSV-SI model are apparently superior to those 
of other competitive SV models. The final section summarizes the paper, and offers 
some concluding remarks. 

2. The theoretical framework with surprising 
information

2.1 The effect of surprising information on the volatility-volume 
relationship

In this section, in order to derive a bivariate mixture model for surprising information, 
we briefly extend the MDH that is modified by Andersen (1996) based on the 
theoretical framework of Glosten and Milgrom (1985). For convenience, we adopt the 
basic setting of Andersen’s (1996) sequential trade model. It is assumed that each 
private information arrival induces a price discovery phase followed by an equilibrium 
phase. In his sequential trade model, therefore, each private information arrival is 
likely to generate trading by the informed traders, leading to price change, but noise 
trading is assumed to have no influence on price change because noise trades carry 
no information. On the basis of the market microstructure theory, however, this 
assumption seems to be too restrictive to derive the exact relationship between 
volatility and trading volume so that it is relaxed in this paper.

The Return Process: For the large number of information arrivals, and under weak 
regularity conditions, Andersen (1996) postulates that daily returns are 
conditionally normal with mean zero and variances that reflect the intensity of 

information arrivals, tK :

),0(~| 2

ttt KNKr  (2.1) 

where: tr is the continuously compounded return, 
2

is a variance of random return. 

This specification represents that return volatility is driven by the temporal property of 
the information flow. By contrast, Park (2010) argues more reasonably that return 
volatility depends on not only the intensity of information arrivals but the type of 
information: general and surprising information. It is clear that surprising information 
flow tends to result in higher return volatility than general information flow. 
Convincingly, the validity of the additional randomness associated with surprising 
information is supported by empirical features in financial markets such as fat tails and 
excess kurtosis in the distribution of returns.
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The Trading Volume Process: According to Andersen (1996), information arrival 
induces trades so that price and trading volume are jointly determined by the 

information flow. In period t, the trading volume ( tV ) consists of informed and noise 

components:
N

t
I

t VVVt  (2.2) 

where: each trading component is dictated by a Poisson arrival process with an arrival 
intensity. That is, noise component ( N

tV ) is governed by a stochastic process with a 

constant mean intensity of 0m  per day, and informed component ( I
tV ) by a stochastic 

process with an inconstant mean intensity of tK1m . Combining the expressions for the 

informed and noise components, daily volume has the following Poisson distribution: 

)(~| 10 ttt KPocK mmV  (2.3) 

where c is a scaling parameter. 

Surprising Information and the Volatility-Volume Relationship: To look into the 
effect of surprising information on the volatility-volume relationship, we can 
consider the covariance between squared returns and trading volume in the 
system of joint return and trading volume distribution. In Andersen’s (1996) 
framework, the covariance is given by 

)Cov()Cov()Cov( 2

t

2

t

2

t

N
t

I
t V,V,V, RRR t  (2.4) 

where: )Cov( 2

t

I
tV,R  is equal to )(Var1 tKc m , and )Cov( 2

t

N
tV,R is assumed to 

be zero. That is, Andersen (1996) does not allow for the effect of noise trading on 
return volatility. According to the market microstructure theory, however, this 
assumption is quite unrealistic. Some studies (see, e.g., Kyle 1985; Easley et al.,
1996) state that noise trading is inversely related to return volatility due to a positive 
effect of noise trading on the depth of the market. On the other hand, surprising 
information is likely to result in a reduction in the level of disagreement between noise 
traders about the price change, which is caused by noise traders’ nearly unanimous 
reaction to the surprising information. Thus, surprising information, even associated 
with high volatility, may reduce noise trading. In this context, this paper suggests an 

intuition that surprising information, leading to negative )Cov( 2

t

N
tV,R , may cause the 

relationship between volatility and trading volume to be ambiguous or negative, which 
is consistent with Park’s (2010) theoretical result. We next turn to detect surprising 
information empirically. Following this detection, we can indirectly verify that the effect 
of surprising information on the volatility-volume relationship contrasts with that of 
general information.

2.2 A method for detecting surprising information 
Even if surprising information is not observable directly, this paper suggests a reliable 
criterion that distinguishes surprising information from general information. This 
criterion is based on the idea that, as explained earlier, in contrast to general 
information, the surprising information arrival leads to high volatility but little change or 
decrease in trading volume. Hence, in a quantile regression of realized volatility on 
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trading volumes, the coefficient of the relationship between volatility and trading 
volume is likely to be statistically less significant or be transferred from positive to 
negative at higher quantiles of volatility distribution, which are more closely associated 
with surprising information.  

Within this context, we propose a method for detecting surprising information that is 
based on Khmaladze’s (1981) approach extended to quantile regression setting 
(Koenker and Xiao, 2002), which can be applied to test location-scale shift hypothesis. 
If arrivals of surprising information make a different impact on the relationship between 
volatility and trading volume, it might affect both the location (or scale) and the shape 
of the conditional distribution of volatility given trading volume at high quantiles. That 
is, as the quantile of the distribution is closer to one, entailing arrivals of more 
surprising information, the trading volume variable substantially alters the shape of the 
conditional distribution of volatility and hence the location-scale shift hypothesis might 
be rejected with a much wider range of quantile intervals. Inspired by this intuition, we 
propose the following process for detecting days with surprising information. 

1. Calculate realized volatility (RV) at each day.

When general conditions are satisfied, RV (
2~
t ) is obtained by summing intraday 

squared returns over many small intervals within the day (m):
1

0

2

/

2 )(~
m

k
mktt rm                                        (2.5) 

where: mktmktmktr /)1(// PP . Under weak regularity conditions, RV 

converges in probability to the quadratic variation of the diffusion process over the 
day as m  goes to infinity (e.g., Andersen et al., 2001, 2003): 

)(~lim 22 mp t
m

t                                         (2.6) 

where:
2

t  is the integral of the instantaneous variances over the day t .
2. Produce time series of filtered realized volatility (FRV) and detrended log-trading 

volume (V ).
To filter out the autocorrelation and a day-of-the-week effect, the following 
regression is estimated.

4

11

RVRV
j

tjtj

L

i
itit Dbac                        (2.7) 

where: c  is a constant, jtD ’s are day-of-the-week dummies used to capture 

differences in mean volatility, and itRV ’s are lagged RVs. Thus, the absolute 

values of the residuals are considered as FRV. On the other hand, in order to 

obtain V , the following regression is estimated. 
4

1

2

21LV
j

tjtjt Dbaac tt                        (2.8) 
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where: tLV  are log-trading volumes, c  is a constant, t  is a linear trend, 
2t is a 

quadratic trend, and jtD ’s are day-of-the-week dummies.

3. Consider the linear location-scale regression model: 

tttt xx )(y                                           (2.9) 

where: tFRVyt , tVtx , and  are parameters, and t  are assumed 

independent and identically-distributed random varibles from some distribution 0F .

4. Using the test statistic proposed by Koenker and Xiao (2002), implement the test of 
the location-scale shift hypothesis with the form: 

)()( rR                                              (2.10) 

where:  is some index set ]1,0[ , )()( 1

0F , R  is a q × p matrix 

(q  p), and 
qr R . Under the null hypothesis we have the process: 

))(ˆ)(ˆ()')(()(ˆ 2/1

0 rRRRTvT                    (2.11) 

where: ))(()( 1

000 Ff ,
1

00

1

0 HJH  with 'lim 1

0 tt xxTJ  and 

)'/('lim 1

0 ttt xxxTH . Then, employing Khmaladze’s (1981) martingale 

transformation, we have )(ˆ)(~
TgT vQv  and Kolmogorov-Smirnov-type test 

statistic: 

||)(~||sup TT vK
T

                                          (2.12) 

Using 1l  norm, Koenker and Xiao (2002) report asymptotic critical values of the 

test statistic TK  in an electronic appendix. Note that arrivals of surprising 

information guarantee the existence of quantiles at which the null hypothesis is 
rejected. In reverse, any rejection indirectly verifies that the effect of surprising 
information on the volatility-volume relationship differs from general information. 

5. As the range of quantile intervals, ]1,[ aaT , widens from 25.0a  to 

05.0a 6
, repeat the test of the location-scale shift hypothesis with a 

diminishment of 0.01 in a  and find a lowest a~ at which the hypothesis is rejected 
due to the impact of surprising information. Then, at quantiles higher than the 

quantile a~1 , we can expect the arrival of surprising information in the market. 
Consequently, if on given a day, t , the daily realized volatility is greater than the 

value of the ( a~1 )
th
 conditional quantile function of FRV, we can decide that 

surprising information arrived on t .
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]1,[ aaT
 from 25.0a  to 05.0a is wide enough to find a~ .
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3. The BSV-SI model and estimation methodology 

3.1 Model specification 
Stochastic volatility models have flexibility due to allowance for error processes for the 
conditional variance as well as the conditional mean. With regard to forecasting 
performance, the stochastic volatility models can be extended in two ways: 1) 
incorporating surprising information and 2) specifying bivariate case for returns and 

trading volume based on the theoretical framework in Section 2. Setting ty  be a 

vector of returns and detrended log-trading volume, T,1,t,)',(rt tV , therefore, 

the BSV-SI model is defined as:

ttt

ttttt

trtt

ttt

hh
hh

21

11

2/1

xx

)(

)}exp(),{exp(diagH

H

where: )',( trtt hhh V  is the logarithm of the latent volatilities and )',( Vr ,

)',( Vr , )',( Vr , )',( Vr are parameter vectors. In the transition 

equation, t1x and t2x  are explanatory variables, defined as )'D,(Dx S

1-t

S

1-t1t ,

)'|r|,(x 1-t12 tt V  where 
S

1-tD is a dummy variable for surprising information. The 

operator  denotes the Hadamard product. The persistent parameter is assumed to 

satisfy 1|| , implying that th  is stable, and )',( trtt V , )',( trtt V  are 

vectors of error terms. Corresponding to the MDH, it is assumed that  is an identity 

matrix, but the off-diagonal elements of are not all equal to zero: 

2

v

2

rv

2

rv

2

r
 (3.2) 

3.2 Estimation using a MCMC methodology 
The BSV-SI model cannot be easily estimated by standard maximum likelihood 
methods because both the parameter vector and the unobserved volatility vector have 
to be estimated simultaneously and further the observation equation is nonlinear in the 
state variable. Indeed, from the BSV-SI model, the log volatility vector is defined as 

),,( 1 Tt hhh  and the parameter vector is defined as ,,,,( VV rr .

),,,,,, 2

rv

2

v

2

rVV rr . Therefore, the likelihood function of the model is the 

conditional density of data y :

(3.1)
0

0
,

0

0
N~

t

t
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dhhfhyfdhhyfyfL )|(),|()|,()|()(  (3.3) 

Denoting ),,( 111 tt yyY , the density of the data can be represented as a mixture 

over the log volatility vector using law of total probability:

t
T

t ttttt
T

t tt dhYhfYhyfYyfyf
1 111 1 ),|(),,|(),|()|(   (3.4) 

where: this likelihood function is intractable because the density function 

),|( 1tt Yhf  has no closed  form so that 1| tt Yy  cannot be analytically expressed. 

To resolve this problem, the MCMC methodology, proposed by Shephard (1993), has 
been extensively used. According to the results of simulation for estimating stochastic 
models, the MCMC methodology is superior to the alternatives such as a quasi-
maximum likelihood method or GMM method in terms of sampling properties 
(Jacquier et al., 1994). 

The procedure of the Bayesian MCMC estimation algorithms for the BSV-SI model is 
straightforward. At first, it constructs a Markov chain in which limiting invariant 

distribution is the target distribution, )|,( yhf . Simulating the Markov chain a large 

number of times and recording its values produces a sample of draws from the target 
distribution. However, the likelihood function for the BSV-SI model cannot be obtained 
and this precludes the direct construction of the posterior distribution 

function )|( yf . The problem requires that the parameter vector  is augmented 

by the log volatility vector h  to form a large parameter vector ),( h  and the joint 

distribution of ),( h  conditional upon y , i.e., )|,( yhf , is substituted for the 

posterior distribution function )|( yf . Consequently, this allows the MCMC 

methodology to sample the density without computing the likelihood function and to 

estimate both the parameter vector  and the log volatility vector h 7
.

4. Forecasting return volatility of KOSPI index 

4.1 The Data 
The data employed in this empirical application are daily and high-frequency KOSPI 
and trading volumes (the number of trading stocks) in the stock market of South 
Korea, covering the period between January 2, 2004 and April 30, 2008

8
. After 

missing values are dropped, the sample contains a total of 1070 observation days. 

                                                          
7
 For more discussion along this line, see Chib et al. (2002), Broto and Ruiz (2004), Asai et al. 
(2006).

8
 The span of the sampling period has high volatility due to the ‘U.S. subprime mortgage crisis,’ 

which has caused panic in global financial markets, and other several pieces of big news. For 
representative news, we can take the following: “China shock” (April 29, 2004), triggered by 
Chinese premier Wen Jiabao’s comments on cooling down the overheating Chinese 
economy and dealing a sharp blow to the Korean financial markets, “Announcement that 
North Korean implemented nuclear test” (October 9, 2006), “News about credit fears in global 
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To avoid problems arising from the non-stationary behavior usually observed in stock 
prices, we take the natural logarithmic differences between two successive trading 

days. The differences of log prices are defined as returns: 100)( 1tttr PP . This 

paper also calculates absolute daily return residuals ( |ˆ| t ) which have been widely 

used to estimate daily volatility. They are obtained from estimating the following 
regression model: 

4

1

2

1 j
tjtj

i
itit Dbracr  (4.1) 

where c  is a constant, jtD  values’ are day-of-the-week dummies used to capture 

differences in mean returns, and itr  values’ are lagged returns. Based on Akaike’s 

information criterion (AIC), the two lag length is chosen to control for serial 
dependence in returns

9
. Since existing literature (e.g., Andersen et al., 2001; Bandi 

and Russell, 2008) indicate that five-minute observations are close to optimal 
sampling intervals, the high-frequency data used here to measure realized volatility 
are five-minute observations of spot markets, which are provided by the Korea 
Exchange (KRX, http://sm.krx.co.kr)

10
. The use of a five-minute frequency, 

corresponding to 60 intraday observations (m=60), means that the total data used in 
this study were obtained from 64,200 observations. Using the method in section 2.2, 
realized volatility estimates are calculated by summing squares of MA(1)-filtered 

intraday returns
 11

:
59

0

2

60/RV
j jtt r .

4.2 Preliminary statistics and findings 

In table 1, a wide range of preliminary statistics for returns ( tr ), trading volume ( V ),

detrended log-trading volume (V ), absolute return residuals ( |ˆ| t ), and realized 

volatility (RV) are reported. These include the following distributional parameters and 
test statistics: minimum, maximum, quartiles, mean, variance, skewness, kurtosis, 
Ljung-Box Q statistic for the null hypothesis of no serial correlation, Jarque-Bera (JB) 
statistic for the null hypothesis of normality, and augmented Dickey-Fuller statistic 

                                                                                                                               
financial markets triggered from the fact that France's biggest-listed bank, BNP Paribas, had 
frozen $2.2 billion worth of funds hit by subprime mortgage crisis” (Aug. 10, 2007) .

9
 Unlike what has been found in some financial markets, there is little evidence of a weekday 

effect in returns because none of the coefficients for weekday dummy variables is significant. 
Thus, the day-of-the-week effect for returns is not taken into account. The estimation results 
are not reported in this paper, but can be obtained from the author upon request. 

10
 The Korea Exchange was established by consolidating three Korean domestic exchanges: 
Korea stock exchange, KOSDAQ market, and Korea future exchange.

11
 Realized volatility suffers from a bias problem resulting from market microstructure noise, 
causing autocorrelation in the intraday returns (Hansen and Lunde, 2006). To remove this 
autocorrelation and resolve the problem, filtering techniques such as a moving average (MA) 
filter have been used by Andersen et al. (2001), Maheu and McCurdy (2002), and others. 
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(ADF) for the null hypothesis of unit root. The graphs of the series are presented in 
Figure 1. The first panel of this figure shows the movements of returns, which 
supports the view that the return series is highly dynamic. The return series also tends 
to be clustered together over time. For the series, the coefficients of skewness and 
kurtosis support the view of non-normality and, as expected, the Jarque-Bera (JB) 
statistic safely rejects normality.  

The second and third panels of Figure 1 show the turbulent movements of absolute 

return residuals |ˆ| t  and RV, respectively. For the series, we observe two extremely 

high volatility periods which occurred during the second quarter of 2004 (influence of 
China shock) and after the summer of 2007 (influence of U.S. subprime mortgage 
crisis). Their movements seem to be similar but realized volatility might have much 
less variation than absolute return residuals except when measured at several 
extreme values. Hence, the use of such a noisy volatility estimator will undermine the 
inference regarding accuracy of volatility forecasts.

Table 1 

Summary statistics for tr , |ˆ| t , RV, V  and V
Statistics 

tr V V RV |ˆ| t

Minimum  -7.4078 1.2348e+08 -0.8296 0.0820 0.0008 
Maximum  5.3769 9.3472e+08 1.0254 10.1767 7.4299 
First Quartile -0.5530 2.5874e+08 -0.2265 0.4910 0.3072 
Third Quartile 0.8462 4.1523e+08 0.2214 1.2144 1.3376 
Median 0.1687 3.3000e+08 -0.0146 0.7433 0.7146 
Mean 0.0744 3.4366e+08 0.0000 1.0144 0.9510 
Variance 1.6922 1.3389e+16 0.1031 0.8938 0.7750 
Skewness(Sk=0) -0.6577 0.7170 0.0950 3.6466 1.8899 
Kurtosis(Ku=0) 2.4910 0.6460 -0.4581 19.8852 5.7525 
Q(10) 13.6 

(0.1898)
6048.9

(0.0000)
6462.2

(0.0000)
2164.6

(0.0000)
243.6

(0.0000)
Q(50) 56.8 

(0.2347)
15340.1
(0.0000)

18184.5
(0.0000)

3912.3
(0.0000)

468.0
(0.0000)

JB 355.96 
(0.0000)

110.99
(0.0000)

10.85
(0.0043)

2120.06
(0.0000)

2116.59
(0.0000)

ADF -30.946 
(0.0000)

-4.6690
(0.0001)

-4.9026
(0.0000)

-7.5278
(0.0000)

-7.5217
(0.0000)

Note: Skewness and Kurtosis are coefficients of skewness and kurtosis, respectively. Q(M) is 
the Ljung-Box Q statistics at lag M for series, JB is the Jarque-Bera normality test and ADF is 
the augmented Dickey-Fuller statistic including an intercept term. P-values are in parentheses.

The coefficients of skewness and kurtosis for RV and V  support the view that each 
distribution is not normal, coinciding with the other empirical findings. In particular, the 
high kurtosis of RV is attributed to large outliers that should be strongly associated 

with surprising information flows. Jarque-Bera (JB) statistics for RV and V  also reject 
normality at the conventional 5-percent level. Another important property of the series 
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is revealed by the joint test of serial correlation. The Ljung-Box Q statistics are 
computed up to the tenth and fiftieth lags. Under the null hypothesis with no serial 
correlation, such statistics have an asymptotic chi-square distribution with ten and fifty 
degrees of freedom. The Ljung-Box Q statistics indicate a high serial correlation in RV 

and V series, which reveals a long memory feature. The fourth panel of Figure 1 

displays the detrended log-trading volume series (V )
12

, which will be used in our 
empirical study. As expected, for detrended log-trading volume, non-normality is 
reduced considerably and more correlation structure in the series appears in 
comparison with the raw trading volume series. 

In order to test for the stationarity of the series we use the augmented Dickey-Fuller 
(1979) tests of the null of unit root against the stationary series. The results, provided 
in Table 1, indicate that all series are clearly stationary. Especially, the stationarity 

nature for the series of RV and V  allows us to apply traditional economic models to 
empirical works. 

Figure 1 

KOSPI returns, absolute value of residuals, RV, and DTLV 
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 It is necessary to filter out the trend as previous studies have done (e.g., Jorion, 1996; Park, 
2007). The estimation results using Eq. (2.7) are not reported in this paper, but can be 
obtained from the author upon request. 
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4.3. Detecting unobservable surprising information 
Using the method described in the section 2.2, we can detect days with arrival of 
surprising information. On the basis of the linear location-scale regression model Eq. 
(2.9), we implement the test of the location-scale shift hypothesis at the range of 

quantile intervals ( ]1,[ aaT ) with a diminishment from 25.0a  to 05.0a by

0.01 and find a lowest a~ at which the hypothesis is rejected due to the impact of 
surprising information. 

Table 2 reports the estimates of Kolmogorov-Smirnov-type test statistic with 1l  norm. 

According to asymptotic critical values for the test statistic provided by Koenker and 

Xiao (2002), the 5-percent critical values for 1.0a and 05.0a are 2.102 and 

2.140, respectively. Therefore, 07.0a is a lowest a~ at which the hypothesis is 
rejected and consequently, if on given a day t , the filtered realized volatility (FRV) is 

greater than the value of )|93.0( tVtFRVQ , we can decide that surprising information 

arrived on t . For instance, the days of “China shock” (April 29, 2004), “North Korea 
nuclear test” (October 9, 2006), and “News about credit fears in global financial 
markets” (Aug. 10, 2007) are detected as days having surprising information.

This empirical result supports the argument that, as the quantile of the distribution is 
closer to one, entailing arrivals of more surprising information, the trading volume 
variable substantially alters the shape of the conditional distribution of volatility and 
hence the location-scale shift hypothesis is rejected with a much wider range of 
quantile intervals. Therefore, it corroborates the Park’s (2010) idea of the negative 
effect of surprising information on the relationship between volatility and trading 
volume.

Table 2

Test of the location-scale shift hypothesis 

]1,[ aaT Test statistic ]1,[ aaT Test statistic 

[0.25, 0.75] 0.1461 [0.10, 0.90] 1.5277 

[0.20, 0.80] 0.4986 [0.09, 0.91] 1.5796 

[0.15, 0.85] 0.1753 [0.08, 0.92] 1.9882 

[0.14, 0.86] 0.8622 [0.07, 0.93] 2.1981* 

[0.13, 0.87] 1.2168 [0.06, 0.94] 2.6449* 

[0.12, 0.88] 1.1561 [0.05, 0.95] 3.1881* 

[0.11, 0.89] 1.3426   

Note: Asterisks indicate parameters statistically significant at the 5-percent level.  

4.4 Forecasting results and the relative performance of the BSV-SI model
Given our emphasis on surprising information, we now turn to estimation of the BSV-
SI model using KOSPI returns and trading volumes, and compare its forecasting 
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performance with SV models and historical volatility models with realized volatility that 
have been commonly specified in the literature: 
 SV Model (simple stochastic volatility model): 

tttttt hhhr )(,)2/exp( 1 .

 SV-J Model (stochastic volatility model including a jump variable whose coefficient 

is changed over time): tttttttt qhhhr )(,)2/exp( 1 ,

where tq  is a Bernoulli random variable that takes 1 with probability and 0 with 

probability 1  and the size of jumps is denoted by ),(N~ vmt .

 SV-V Model (stochastic volatility model including a lagged volume variable): 

tttttttt hhhr ))((,)2/exp( 211 VV , where 1tV  is a 

lagged variable for detrended log-trading volume. 
 AR-RV Model (autoregressive model for the realized volatility): 

t
i

i ebb
17

1
i-t0t RVRV , where the AR(17) process is constructed to consider the 

autocorrelation in the square root of realized volatility based on AIC.
 HAR-RV Model (heterogeneous autoregressive model for the realized volatility): 

tttMWD ebbbb 1,231-t6,-t1-t0t RVRVRVRV , where ktt ,RV  is the 

multiperiod realized volatility that is normalized sums of the one-period realized 

volatilities (Corsi, 2004). That is, it is denoted by ktt ,RV

)(k kttt RVRVRV 21
1 and ,2,1k  so that 11, RVRV ttt .

For the posterior computation in the stochastic volatility models, WinBUGS is used 
because it is well known that WinBUGS provides an efficient implementation of the 
MCMC algorithm. The posterior quantities are computed from 10,000 draws of the 
MCMC algorithm, collected after an initial burn-in period of 1,000 iterations

13
. To 

estimate the stochastic volatility models via the MCMC algorithm, we should specify 
suitable prior distributions on the unknown parameter vector  and assume each 

parameter to be independent. For instance, a prior density function of ),,( 2

for SV Model is )(f)(f)(f)(f 2 . In this empirical study, prior distributions on 

basically follow from the specification of Chib et al. (2002) or Yu and Meyer (2006). 

Thus, the prior distributions for parameters V,i,,, 2

i rii  are the 

following: 100)0N(~ ,i ; 5)Beta(20,1.~*
i  where 21 /)( i

*
i ; ).,.(~ 025052IG2

i .

Furthermore, we assume 1)0N(~ ,i ; 1)0N(~ ,i ; ),,(N~ vmt  where ),,(~m 1000N

).,.(~v 025052IG .
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 Although it is known that 5,000 draws are large enough to get accurate estimation using an 
efficient Metropolis algorithm (e.g., Chib et al., 2002), this paper takes 10,000 draws for 
optimal implementation in terms of speed and accuracy.  
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In Table 3 the estimation results of stochastic volatility models are reported and in 
Table 4 those of historical volatility models with realized volatility are reported. The 
first 1020 days of the data set are used for estimating the volatility models and the last 
50 days for out-of-sample forecasting. It is noted that we use only one set of 
parameter estimates and not re-estimate the parameters within the out-of-sample 
period. The reason for not using rolling estimates is the computational burden of the 
BSV-SI model.

Table 3

Estimation results of BSV-SI and SV-type models 

SV-J Model SV Model 
Parameter

Mean SD 95% CI Mean SD 95% CI 

0.1899 0.1662 (-0.1429 0.5147) 0. 2482 0.1580 (-0.062 0.5374) 

0.9571 0.0196 (0.9036 0.9855) 0.9648 0.0206 (0.9111 0.9879) 

0.0017 0.0012 (0.0002 0.0049)    

m -14.720 0.1610 (-14.980 -
14 800)

   

0.1971 0.0480 (0.1355 0.3199) 0.1833 0.0486 (0.1676 0.2999) 

RMSE 0.9264 1.0162 

MAE 0.6387 0.6984 

BSV-SI Model SV-V Model 
Parameter

Mean SD 95% CI Mean SD 95% CI 

ror -0.1610 0.1764 (-0.5494 0.1693) 0.0703 0.0650 (-0.0637 0.1753) 

V -0.6570 0.3494 (-0.1323 -
0 2166)

   

ror 0.9698 0.0704 (0.7802 0.9981) 0.9810 0.0095 (0.9519 0.9941) 

V 0.6568 0.1677 (0.2454 0.8308)    

r 0.7245 0.2448 (0.4004 1.2700)    

V 0.3640 0.2043 (0.0058 0.6965)    

ror -0.6297 0.2897 (-1.0950 -
0 006 )

-1.2210 0.2646 (-1.6660 -0.7915) 

V -0.0346 0.0369 (-0.0952 0.0304)    

ror 0.0742 0.0024 (0.0723 0.0801) 0.1634 0.0320 (0.1288 0.2653) 

v
0.0620 0.0019 (0.0587 0.0670)    

0.0212 0.0005 (0.0204 0.0225)    

RMSE 0.8202 1.2034 

MAE 0.5307 0.7883 
Note: SD stands for standard deviation, ‘95% CI’ denotes 95% confidence interval, and 

)/( vr

2

rv .

Table 3 contains the mean, standard deviation, 95% confidence interval of the 
posterior distribution for parameters, and two general loss functions (Root-Mean-
Squared Errors: RMSE and Mean-Absolute Errors: MAE) to measure the in-sample 
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forecasting accuracy of the models. The loss functions are presented in the following 
equations:

2

1

2

1

2

1

1 ˆRMSE
T

t
ttT

T

t
ttT

1

2

1

2

1

1 |ˆ|MAE

where:
2

1t  is the actual volatility and 
2

1
ˆ t  is the predicted volatility obtained from 

volatility models. It is argued earlier that the actual volatility is not observable.

Thus, we use realized volatility (2.5) as a proxy for the actual volatility
14

 so that the 
forecast error here is obtained from the difference between realized volatility and 
predicted volatility. 

Table 4

Estimation results of realized volatility models 

 AR-RV Model  HAR-RV Model 
Parameter Estimate S.E. Parameter Estimate S.E. 

b0 0.1323 0.0428 b0 0.1314 0.0510 
b1 0.4715 0.0638 bD 0.4179 0.1020 
b2 0.1359 0.0640 bW 0.2954 0.1115 
b3 0.0317 0.0507 bM 0.1625 0.0947 

   

b16 0.0418 0.0331    
b17 0.1045 0.0403    

RMSE 0.6724 RMSE 0.6878 
MAE 0.3957 MAE 0.4004 

Note: S.E. is standard errors that are calculated by Newey-West heteroskedasticity consistent 
covariance matrix estimator. 

The estimation results of SV-type models show that the parameter of volatility 

persistence  is highly credible and its values in all models are close to, but less than 

unity. This implies high persistence in the volatility process which may be useful for 
purpose of forecasting conditional volatility (Akgiray, 1989). Turning to the results of 
the HAR-RV model, the estimates for bD, bW, and bM also support the existence of 
highly persistent volatility dependence. Interestingly, the high persistence in volatility is 
not substantially diminished by inclusion of the lagged trading-volume variable, jump 
variable, or surprising information dummy variable. Whereas this peculiarity is not 
anticipated, we can attribute it to recent long-term turbulence due to global financial 

crisis. On the other hand, the estimate of V  is 0.6568 and it reveals that the volatility 

persistence in the volume process is weaker compared to the return process. This 

                                                          
14

 It is known that the integrated volatility is a natural measure of return volatility. Despite the 
non-observability of integrated volatility, the theory of quadratic variation guarantees that the 
integrated volatility is converged uniformly in probability by realized volatility as m   goes to 

infinity (e.g., Andersen et al., 2001, 2003).  
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feature is also found by Liesenfeld (2001). Another empirical finding reported in this 
paper indicates that volatility in both daily stock returns and trading volumes is 
significantly amplified by surprising information and the impact of surprising 
information on volatility is more prominent for returns rather than trading volumes, i.e. 

r = 0.7245 V = 0.3640. 

A nontrivial observation from the plots in Figure 2 is that all SV-type models except the 
BSV-SI Model significantly over-predict volatility. This can be inferred from the 
statistical finding that daily squared return residuals are much more noisy estimates 
than realized volatility. Furthermore, since realized volatility is used to proxy the actual 
volatility in this study, it is natural to find that SV-type models are inferior to realized 
volatility models in in-sample forecasts. Based on the RMSE and MAE, the AR-RV 
model and HAR-RV model are the best and second best fitting models out of the six 
models, respectively. The difference between the RMSE for the AR-RV model and its 
nearest apparent competitor, the BSV-SI Model, is about 22 percent. 

Figure 2 

The in-sample forecasts (line = forecasts, dots = RV) 
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Next, we measure the accuracy of the models in forecasting the one-step-ahead (one-
day-ahead) conditional volatility via two general loss functions: RMSE, MAE and two 
more elaborate loss functions: Heteroskedasticity-Adjusted RMSE (HRMSE) and 
Heteroskedasticity-Adjusted MAE (HMAE), which take into account the 
heteroskedasticity environment, were considered by West et al. (1993), Bollerslev and 
Ghysels (1996) and others. The heteroskedasticity-adjusted loss functions that may 
produce reliable results in the highly non-linear environment are defined by the 
following equations: 

2

1
2

1

2

11 1
ˆ

HRMSE
T

t t

tT
T

t t

tT
1

2

1

2

11 1
ˆ

HMAE

where: T is the total number of observations. 

Table 5

Out-of-sample forecasting criteria (evaluated against 1

2

1 RVtt )

 BSV-SI SV SV-J SV-V AR-RV HAR-RV 
RMSE 0.3481  0.5963 0.4398 1.0742 0.6272  0.5636 

MAE 0.3010  0.5295 0.3627 0.8731 0.4377  0.4933 

HRMSE 0.4046  0.4543 0.3855 0.5387 0.3995  0.4361 
D=5

HMAE 0.3592  0.4040 0.3252 0.4822 0.3236  0.3989 

RMSE 0.3306  0.6392 0.4308 1.1586 0.5074  0.4466 

MAE 0.2839  0.5842 0.3661 1.0489 0.3876  0.3771 

HRMSE 0.3781  0.4883 0.4002 0.6021 0.4077  0.3978 
D =10 

HMAE 0.3292  0.4469 0.3436 0.5673 0.3613  0.3631 

RMSE 0.7229  0.8853 0.9432 1.1283 0.8011  0.8193 

MAE 0.5149  0.7043 0.6461 0.9509 0.5899  0.6012 

HRMSE 0.5192  0.6954 1.1402 0.6037 0.7814  0.7672 
D=20

HMAE 0.4338  0.5485 0.7205 0.5266 0.5670  0.5712 

RMSE 0.5469  0.7463 0.6378 1.0326 0.5871  0.5974 

MAE 0.4112  0.6342 0.4071 0.9104 0.4053  0.4093 

HRMSE 0.4660  0.6040 0.7835 0.6042 0.6128  0.5737 
D=50

HMAE 0.4016  0.5154 0.4892 0.5529 0.4398  0.4215 
Note: Numbers inside circles are model rankings for forecasting performance in terms of each 
loss function. D is the number of days beyond the sample. 

For out-of-sample volatility forecasting, we consider four periods: two short terms (D = 
5, 10), medium term (D = 20) and long term (D = 50). The forecast summary statistics 
from Tables 5 exhibit some features. Most interestingly, in contrast to the results of in-
sample forecasting, the realized volatility models do not dominate over the SV-type 
models in every category of loss functions. Between the AR-RV and HAR-RV models, 



 Forecasting Volatility in Financial Markets 

 Romanian Journal of Economic Forecasting – 3/2011 55

there is no clear distinction in accuracy. Although there is no uniformly most accurate 
model, the BSV-SI Model tends to outperform all other models, whatever the forecast 
period. It appears that its superiority of forecasting is prominent in short forecasting 
horizon. For example, in 5-day forecasting period the RMSE for the BSV-SI model is 
20.85 percent less than that for the second best model (SV-J model), and 38.24 
percent less than that for third best model (HAR-RV model). As anticipated, since 
other models are likely to be sensitive to long-term turbulence in volatility triggered by 
surprising information, they tend to over-predict volatility and their forecasting 
performance are uniformly poor. 

For completeness, we also report the model rankings according to each criterion. In 
terms of the model rankings, the BSV-SI Model is remarkably superior to other 
models. In particular, the RMSE ranks the BSV-SI Model first across all forecasting 
periods. Besides the BSV-SI Model, the SV-J model provide more accurate forecasts 
when the forecasting period is shorter, whereas the realized volatility models do so as 
forecasting period is longer. For instance, the HRMSE ranks the SV-J model first in 5-
day horizon and the MAE ranks the AR-RV model first in 50-day horizon. Overall, it is 
worthwhile to note that although the empirical results only apply to the Korean 
financial market, they confirm the important role of surprising information in volatility 
forecasting. 

5. Discussion and Conclusions 

Forecasting the volatilities of asset returns has been a central theme in the recent 
literature of financial economics. Yet, no research has focused on the role of 
surprising information in forecasting volatility. By definition, surprising information 
causes exceptionally high volatility and persistence. Therefore, this paper argues that 
standard models that fail to account for surprising information may over-predict 
volatility and suffer from poor forecasting performance. In addition, it is well known 
that trading volume as a proxy for the rate of information flow to the stock market is a 
matter for volatility forecasting. Therefore, on the basis of the extension of the 
modified MDH this paper has proposed a bivariate stochastic volatility model with 
surprising information (BSV-SI), which is also designed to capture the dynamics of 
returns and trading volume. This paper has presented a reliable method for detecting 
days with surprising information using Khmaladze’s approach extended to quantile 
regression setting. Furthermore, from a practical perspective, the paper has 
demonstrated that the MCMC provides an efficient method of estimating the model. 

To evaluate predictability of the BSV-SI model as compared with other volatility 
models, we have used five-minute frequency data on KOSPI and daily trading volume 
data in the stock market of South Korea, covering the period from January 2, 2004 to 
April 30, 2008. Empirical results show that although the AR-RV and HAR-RV models 
dominate SV type models in in-sample forecasting, this domination does not extend to 
out-of-sample forecasting. Despite the inexistence of a uniformly most accurate 
model, it is obvious that the BSV-SI model does provide more accurate volatility 
forecasts than realized volatility models and other standard SV models in the empirical 
study with KOSPI data. The accuracy gains are fairly robust with respect to loss 
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functions and forecasting periods. As such, these empirical results clearly 
demonstrate the important role that surprising information and trading volumes play in 
volatility forecasting.

In this research stream there are some of important next steps: First, we need to 
consider asymmetry in volatility that is well-known phenomenon in financial markets. 
Including this asymmetry into the BSV-SI model may improve the performance in 
forecasting future volatility significantly. Second, it is necessary to develop a more 
sophisticated test statistic for detecting surprising information or extension of Koenker 
and Xiao’s (2002) approach, which does not require the assumption of identical and 
independent distribution of error terms in quantile regression. Third, it is important to 
investigate whether the considerable accuracy gain of the BSV-SI model may be 
obtained when other data samples are employed from a variety of markets (e.g. 
foreign exchange market, option market, or forward market). Thus, we leave further 
work along these lines for future research. 
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