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Abstract 
The evolution of financial assets is known to be non-stationary and to present long tails and 
non-Gaussian. Gaussian processes are a flexible and general Bayesian nonparametric 
generative model that provide flexible priors on function spaces and interpretable uncertainty 
quantification. While GP are extremely flexible function approximators, their Gaussian 
marginal distribution makes them inappropriate to model financial assets returns 
distributions. We present the Student t-processes that are known to fit heavier tail. We also 
augment the model with input warping to account with the financial time series non 
stationarity. We present a case study of fitting the evolution of SP500 index stressing the 
importance of good uncertainty estimates, especially when the series manifests structural 
breaks. 
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1. Introduction 
The evolution of financial assets is a research subject of vast dimensions. The literature 
dedicated to modeling the evolution of financial returns focused overwhelmingly on the task 
of finding a quantitative relationship able to accurately describe and predict the financial 
returns. While we acknowledge the importance of quantitative predictions of the model, we 
also think that having a measure of the model’s confidence in its predictions is of equal 
importance. The bayesian methodology offers a principled way of quantifying uncertainty.  
An important branch of bayesian statistics is the bayesian nonparametrics where the concept 
of probability distribution is extended on more abstract spaces. The gaussian processes, 
proposed by Rasmussen (2003) is an example of the above mentioned extension. A 
gaussian process (whose technical definition will be elaborated the sections below) is a 
stochastic process for which each realization is a continuous function. Hence a gaussian 
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process can be considered as a probability distribution on the space of continuous functions. 
The gaussian processes are used in functional regression settings. A gaussian process 
regression does not need to posit a functional form of the regression model. The functional 
form and the parameters of the regression model are estimated from data under the form pf 
a posterior distribution (bayesian inference).  
Student t-processes, studied in literature (see Jylanki (2011), Vanhatalo (2009), Rios (2018)) 
are more robust to outliers alternative to Gaussian Process regression. At the same time 
Student t-processes retain the universality property of the gaussian processes. Both 
gaussian and Student t-processes are probability distributions on functional spaces, they 
only differ in the probability attached to each function. We use the Student t-processes to 
model the evolution of financial returns, as they are more capable to model deviations from 
gaussianity that we observe in the financial assets’ evolution,  
We also make use of the warping function Bayesian framework described in Lazaro (2012) 
and extend it to Student t-processes. The warping functions are a way to impose constraints 
on the input data (positivity, boundedness). We use the warping function framework to 
incorporate domain knowledge (stylized facts about financial returns). In this paper we 
propose a principled Bayesian nonparametric model based on warping functions and 
Student t-processes of the evolution of financial returns. The model proposed is non-linear 
autoregressive with no exogenous variables (only the history of the given asset is 
considered). We discuss the fitted Bayesian model for the evolution of the equity index S&P 
500 and discuss how it recovers the stylized facts about financial assets returns. 

2. Student T-processes 
In this section, we describe the properties of gaussian and Student-t processes and the 
connection between them. We also present the most typical covariance functions describing 
how the functions sampled from a gaussian/student processed are influenced by the form of 
covariance functions.  
2.1 Gaussian Processes 
Gaussian processes are stochastic processes that define a probability distribution on a 
function space. Following Rassmussen (2003):  
Definition 1 A Gaussian process is a stochastic process which for any finite realization x1,

,xn the collection of random variables x1, ,xn has a joint Gaussian distribution:  (𝑓(𝑥ଵ), … , 𝑓(𝑥௡) )~ℵ(𝑚(𝑥ଵ, … , 𝑥௡ ), Σ). 
The Gaussian processes are completely specified by the mean and the covariance function 
of the stochastic process f(x):  𝑚(𝑥 ) = 𝔼ሾ𝑓(𝑥 )ሿ 𝑘(𝑥 , 𝑥ᇱ ) = 𝔼ൣ൫𝑓(𝑥 ) െ 𝑚(𝑥 )൯൫𝑓(𝑥ᇱ) െ 𝑚(𝑥ᇱ )൯൧ 𝑓(𝑥 )~𝒢𝑃൫𝑚(𝑥 ), 𝑘(𝑥 , 𝑥ᇱ )൯ 𝑓(𝑥 )~𝒢𝑃൫0, 𝑘(𝑥 , 𝑥ᇱ )൯ 

The definition imposes on the Gaussian process a consistency/marginalization. The 
distribution specified by the finite realization x1, ,xn must be consistent with any subset 
x11, ,xn1 (i.e. if we marginalize out the distribution of the full set with respect to the 
random variables not present in the subset, we recover the distribution of the subset). The 
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consistency property of the random processes allows us to consider the Gaussian processes 
as probability distributions on function spaces, as it allows one to iteratively sample new 
points to the others already sampled.  
The forms of the functions sampled from the Gaussian processes depend on the form of the 
mean and covariance functions. Usually the mean function m(x) is set to 0 hence one 
samples functions from:  𝑓(𝑥 )~𝒢𝑃൫0, 𝑘(𝑥 , 𝑥ᇱ )൯ 

Figure 1 
Sample Functions Drawn from a Gaussian Process with Matern 3/2 Covariance 

 
 

The properties of the functions sampled from the Gaussian process are controlled by the 
analytical form of the covariance function allowing one to express prior beliefs such as 
smoothness, periodicity, stationarity.  
Stationary covariance functions. If the covariance function does not separately depend 
on x and x′ but only on the distance 𝜏 = ‖𝑥 െ 𝑥ᇱ‖ between the points we call the 
covariance function stationary. Gaussian processes with stationary covariance kernels 
sample functions which have the same properties across the whole domain. The most used 
stationary kernels are:  

1. Squared exponential covariance: 
 𝑘ௌா(ఛ) = 𝑒ିఛమ/ଶ௟మ , 

where: l is the characteristic length controlling the interval needed for the sample 
function to significantly change;  

2. Matern covariance: 

 𝑘ெ௔௧௘௥௡(𝑥 , 𝑥ᇱ ) = ௘ଶభషഌ୻(ఔ) ቀ√ଶఔఛ௟ ቁఔ 𝐾ఔ ቀ√ଶఔఛ௟ ቁ, 

where: Kν is the modified Bessel function. The case ν = 3∕2 corresponds to 
continuous version of the autoregressive model AR(1); 

3. White noise covariance: 
 𝑘(𝑥 , 𝑥ᇱ ) = 𝜎ଶ𝐼௫௫. 
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Figure 2 
Sample Functions Drawn from Gaussian Process with White Noise Covariance 

 
 
Sample functions drawn from different covariance kernel are presented in Figures 1 and 2.  
Gaussian process for regression. Following Rasmussen (2003) let the set of the known 
observations (𝑥 , 𝑦 ) = (𝑥 , 𝑓(𝑥) ) and let f* be the predictions for new points x*. Suppose 
f and f* are sampled from the same Gaussian process then we have:  𝑓∗ǀ𝑥∗, 𝑥, 𝑓~𝒩൫𝑘൫𝑥∗ , 𝑥 ൯𝑘(𝑥 , 𝑥 )ିଵ𝑓 , 𝑘൫𝑥∗ , 𝑥∗ ൯െ 𝑘(𝑥∗, 𝑥 )𝑘(𝑥 , 𝑥 )ିଵ𝑘൫𝑥, 𝑥∗ ൯ ൯ 

(1) 

The covariance of the predictive distribution described in equation 1 shows no dependence 
on the observed values of f. This means that the observed values of f only control the means 
of the predictions having no influence on the uncertainty estimation of the predictions.  
The Gaussian process regression are a very flexible nonparametric method (the only 
constraints on the sampled functions are the weak ones imposed by the chosen form of the 
covariance functions). However, the prediction is sampled from a Gaussian distribution 
which is not very robust to outliers and the covariance of the sampled distribution is not 
influenced by the observed f which makes the uncertainty estimates not reliable.  
2.2 Student T-processes 
The Student t-processes are a generalization of Gaussian Processes being part of the larger 
class of elliptical process. While for a Gaussian process the marginal distribution is a 
multivariate normal distribution, the marginal distribution of a t-process is a multivariate 
Student distribution. In the limit of the infinite degrees of freedom the Student distribution 
converges to the multivariate gaussian distribution and in this limit the Student t-process are 
generalization of the Gaussian processes. We will describe below a fully Bayesian 
hierarchical derivation of the Student t-processes due to Shah (2014). Having a fully 
specified hierarchical Bayesian model will allow us to include it in the more complex 
hierarchies needed to model financial assets’ returns.  
Inverse Wishart Process. The Gaussian processes 𝑓~𝒢𝑃(0, 𝐾) suppose the 
specification of a covariance matrix whose propertiy is symmetry and positive definiteness. 
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The covariance matrices presented in the previous section are parametric forms specified 
by the covariance function. A full Bayesian treatment will suppose putting a prior on the 
possible covariance matrices, a probability distribution over the space Π(n) of all nxn 
symmetric, real valued and positive definite matrices.  
An obvious choice of probability distribution over the space of covariance matrices would be 
the Wishart distribution. However as proved in Shah (2004), the Wishart distribution is not 
consistent under marginalization. Shah proposed the usage of the inverse Wishart 
distribution which is consistent under marginalization and is defined as:  
Definition 2 A random matrix Σ ∈ Π(𝑛) is inverse Wishart distributed with parameters  𝜈 ∈ℝା and K ∈ Π(𝑛)𝑝(Σ)~IW௡(𝜈, 𝐾) if its density function is:  𝑝(Σ) = c௡(𝜈, 𝐾)|Σ|ି(ఔାଶ௡)/ଶ𝑒𝑥𝑝 ቂെ ଵଶ 𝑇𝑟(𝐾Σିଵ)ቃ, 
where: 

 c௡(𝜈, 𝐾) = |୏|(ഌశ೙షభ)/మଶ(ഌశ೙షభ)/మ୻೙ሾ(ఔା௡ିଵ)/ଶሿ. 
The inverse Wishart prior is equivalent to the Wishart matrix prior because Σ~𝑊(𝜇, 𝐾) if 
and only if Σିଵ~𝐼𝑊(𝜇, 𝐾). The inverse Wishart distribution allows one to construct the 
inverse Wishart process defined as:  
Definition 3 σ is an inverse Wishart process on  with parameters 𝜇 ∈ ℝା and a base 
kernel 𝑘: 𝒳𝑥𝒳 → ℝ  if for any finite collection x1, ,xn ∈  we have 𝜎(𝑥ଵ, … , 𝑥௡)~𝐼𝑊(𝜈, 𝐾) where 𝑘௜௝ = 𝑘൫𝑥௜, 𝑥௝ ൯. We say that ~𝐼𝑊𝑃(𝜈, 𝐾) . 
Student processes as hierarchical gaussian. Shah et al. ([6]) propose the following 2 
stage hierarchical model for a base kernel k0 and a continuous mean function Φ: 𝒞𝒳 →ℝ :  𝜎~𝐼𝑊𝑃(𝜈, 𝑘଴); 
 𝑓ǀ𝜎~𝒢𝑃(ϕ, (𝜈 െ 2)𝜎).   (2) 
The conjugacy of inverse Wishart prior to a gaussian likelihood allow Shah et all to derive 
from the posterior distribution:  𝑝(𝑓ǀ𝜇, 𝐾)~𝑀𝑉𝑇௡(μ, ϕ, K), 
where: MV Tn denotes the multivariate Student t-distribution. From the above one can define 
the Student t-process as:  
Definition 4 f is a Student t-process on  with parameters μ > 2 and Φ: 𝒳 → ℝ  and 
kernel function 𝑘: 𝒳𝑥𝒳 → ℝ  if any finite collection of function values is a multivariate 
Student t-process. We write: 𝑓~𝑇𝑃(𝜇, Φ, 𝑘). 
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Figure 3 
Sample functions drawn from a Student process 3 degrees of freedom with 

Matern 3/2 covariance 

 
 
In Figure 3 we illustrate a few sample functions drawn from Student t-process. The fat tails 
of t multivariate distribution results in a greater variability of sample functions compared to 
the ones drawn from the equivalent Gaussian process.  
2.3 Power Transforms 
Power transforms are introduced to address the non-gaussianity of positive data. A standard 
approach in financial stochastic theory is to apply the logarithm to the positive non gaussian 
data.  

Figure 4 
Sample functions drawn from a warped Student process 3 degrees of freedom 

with Matern 3/2 covariance 

 
 
The Box-Cox transformation are a generalization of the logarithmic transform and are widely 
used in the statistics literature (see for example Bickel (1981)). The Box-Cox transform of 
parameter λ are defined as:  
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ϕఒ(𝑥) = 𝑠𝑔𝑛(𝑥)|𝑥|ఒ െ 1𝜆 .
In [7] is shown that even if the transformed data is not gaussian at least the first moments 
are symmetrical.  
In this paper we will use the Box-Cox transform as input warping function for the Gaussian 
and Student t-processes, An input warping function is of the form: ϕ(𝑥)~𝒢𝑃(𝑚, 𝐾)) or ϕ (𝑥)~𝒯𝑃(𝑚, Φ, 𝐾). 
By using a warping function, the covariance function becomes non-stationary as MacKay 
shown in MacKay (2003). This property makes desirable the use of warping function in the 
analysis of non-stationary time series as it allows the use of stationary covariance functions 
to model non=stationary series. In Figure 5, the Box Cox transform is presented and samples 
from a warped Student process are presented in Figure 4. As one may see in Figure 4, the 
sampled functions are changing shape dependent on variable x.  

Figure 5 
Box Cox power transform 

 
 

3. Modeling Financial Time Series Student T-
processes 

We set out to use the Gaussian and Student t-processes to model the evolution of the 
SP500. The objective of the modeling exercise is obtaining predictions of the future unknown 
evolution of the index at the same time with quantifying the uncertainty in making those 
predictions. To get uncertainty estimates necessary for establishing a a grounded and robust 
approach to forecasting we will specify a full Bayesian hierarchical model in which Gaussian 
or Student processes are a vital components The choice of covariance functions is critical, 
as we have seen above, to the shape of the function sampled and it will be guided by a set 
of stylized facts about the evolution of financial assets returns collected from the literature  
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3.1 Stylized Facts 
Stylized facts are obtained by taking the common denominator among the properties 
observed in the studies of different markets and instruments. This means that stylized facts 
are presented in terms of qualitative properties.  
In his survey of the financial econometrics’ literature, Rama Cont (2011) has identified the 
following set of stylized facts  

1. Non-stationarity. The stationarity hypothesis of financial asset returns affirms that 
for any set of times t1, , tk the distribution of returns along with its moments is 
largely unchanged. This hypothesis is largely believed to be untrue as we can see 
from Figure 5 where we can see that there are periods of high and low volatility (the 
standard deviation is not constant).  

 

Figure 6 
Evolution of S&P 500 returns between February 2015 and February 2017 

 
 

2 Fat tails. The fat tails phenomenon is concerned with the probability mass that is to 
be found in the tails of the probability distribution (extreme events far away from the 
mean). The presence or the absence of the fat tails is judged relative to the tails of 
the normal distribution (there is no expectation to find significant probability mass 2 
standard deviations away from the mean in the case of a normal distribution) and is 
measured kurtosis. A value significantly higher than 3 (the value for a normal 
distribution) indicates the fat tail phenomenon.  

3 No linear autocorrelations. Linear autocorrelations are often insignificant except 
for small time scales (high frequency). The absence of autocorrelations means that 
the classical time series models like ARMA cannot distinguish between white noise 
and asset returns. The dependence of asset returns is nonlinear.  
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3.2 Modeling SP500 with Input Warped T-process 
Given the stylize facts presented below we propose a hierarchical Bayesian model in which 
we use:  
 A warped Student t-process to account for heavy tails and non-normality of financial asset 

evolution. The functions drawn from the process are the filtered (de-noised) evolution of 
financial returns.  

 The covariance function of the Student t-process is a squared exponential. The length 
scale of the covariance function has a gamma prior distribution.  

 The number of degrees of freedom ν has a positive Cauchy prior distribution.  
Figure 7 

Bayesian model of S&P 500 returns with normal likelihood and a warped 
Student t-process with square exponential covariance function. 

 
 A Box-Cox warping function to account for the non-stationarity in the data. The Box-Cox 

transformation account for the non-constant variance stylized fact discussed above. The 
parameter λ which controls the shape of the warping function has a positive Cauchy prior 
distribution.  

 An observational model with normally distributed noise. The standard deviation of the 
observational noise a positive Cauchy prior distribution. This accounts for the bursty 
behavior. 

We can observe that the majority of prior distributions are positive Cauchy distributions. We 
choose this distribution to express our preference for small values of the parameters (the 
mode of the distribution is 0) while also allowing for larger values of the parameters (non-
zero probability on the [0,∞)) should the data require.  
The full hierarchical Bayesian model is presented below:  𝜆~𝒞ା(𝛽 = 3); ϕఒ(𝑥) =  ௦௚௡(௫)|௫|ഊିଵఒ ; 𝜈~𝒞ା(𝛽 = 3); 
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𝑙~𝒢(𝛼 = 2, 𝛽 = 2); 𝑘ௌா(ఛ) = 𝑒ିఛమ/ଶ௟మ 
; ϕఒ(𝑥)~𝑇𝑃൫0, 𝜈, 𝑘ௌா(𝜏)൯; 𝑒𝑝𝑠~𝒞ା(𝛽 = 3); 𝑦~𝒩(ϕ (𝑥), 𝑒𝑝𝑠). 

 

Figure 8 
Bayesian model of S&P 500 returns with normal likelihood and a Gaussian 

process with square exponential covariance function.  

 
  
By using a Hamiltonian Monte Carlo, we extract 1000 possible evolutions (1000 sample 
functions from the model). These sample functions will show us to what extent the fitted 
model recovers the SP500 dynamics. The sampled functions will localize around the 
observed values of SP500 and spread when the uncertainty is high.  
As one may see in Figure 7, when the evolution is predictable the sampled function will 
localize giving precise estimates with low standard deviations and will spread around the 
space when its predictions are of low confidence (as is the case with the upward trend in the 
latter part of the evolution). The sampled functions are non-linear and follow the quasi-
periodicity in the data.  
Even with the non-stationary evolution the model can still with some probability forecast the 
correct evolution.  
For reference we also fitted a Gaussian process but as we can see in Figure 8 the model is 
not robust to fat tails, a majority of points observed or not being situated outside the model’s 
confidence bounds.  
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5. Conclusions 
In this paper we presented a full Bayesian hierarchical model based on Student t-process to 
account for the stylized facts in the evolution of financial assets returns. Although the fitted 
model was not perfect, we managed to recover the fundamental stylized facts of the 
evolution: nonlinear dependencies, fat tails and non-stationarity. As we future work we 
propose including exogenous inputs to improve the predictive quality of the model.  

References 
Rasmussen, C.E., 2003, February. Gaussian processes in machine learning. In Summer 

School on Machine Learning (pp. 63-71). Springer, Berlin, Heidelberg. 
Jylänki, P., Vanhatalo, J. and Vehtari, A., 2011. Robust Gaussian process regression with a 

Student-t likelihood. Journal of Machine Learning Research, 12(Nov), 
pp.3227-3257. Dolado, J.J. and Lütkepohl, H., 1996. Making Wald Test 
Work for Cointegrated VAR Systems. Econometric Reviews, 15, pp.369-
386. 

Vanhatalo, J., Jylänki, P. and Vehtari, A., 2009. Gaussian process regression with Student-
t likelihood. In Advances in neural information processing systems (pp. 
1910-1918). 

Rios, G. and Tobar, F., 2018, July. Learning non-Gaussian time series using the Box-Cox 
Gaussian process. In 2018 International Joint Conference on Neural 
Networks (IJCNN) (pp. 1-8). IEEE. 

Lázaro-Gredilla, M., 2012. Bayesian warped Gaussian processes. In: Advances in Neural 
Information Processing Systems, pp. 1619-1627. 

Shah, A., Wilson, A. and Ghahramani, Z., 2014, April. Student-t processes as alternatives 
to Gaussian processes. In Artificial intelligence and statistics (pp. 877-885). 

Bickel, P.J. and Doksum, K.A., 1981. An analysis of transformations revisited. Journal of the 
american statistical association, 76(374), pp.296-311. 

MacKay, D.J. and Mac Kay, D.J., 2003. Information theory, inference and learning 
algorithms. Cambridge University Press. 

Cont, R., 2001. Empirical properties of asset returns: stylized facts and statistical issues. 




